1. Assignment 1

1.1. Problem 1. In the context of a poset, use upper sets to prove that, when it exists, the join \vee satisfies the following three properties.
(a) $(x \vee y) \vee z=x \vee(y \vee z)$ (associativity)
(b) $x \vee y=y \vee x$ (commutativity)
(c) $x \vee x=x$ (idempotency)
(d) Use duality to prove that the above also hold for \wedge.

These three properties respectively imply that bracketing, order, and multiple incidence don't affect joins and meets. Hence, for a lattice (P, \preceq) and a finite subset $S \subseteq P$, we can construct suprema and infima in terms of joins and meets:

$$
\sup S=\bigvee_{s \in S} s \quad \inf S=\bigwedge_{s \in S} s
$$

(e) Show that, in an infinite lattice, $\sup S$ and $\inf S$ need not exist for infinite S. Suppose there exist elements \top and \perp that satisfy the following.

$$
\begin{aligned}
& x \preceq \top \text { for all } x \in P \\
& \perp \preceq x \text { for all } x \in P
\end{aligned}
$$

We call \top the top element and \perp the bottom element.
(f) Prove that an equivalent definition for \top and \perp is that they satisfy unitality:

$$
\begin{aligned}
& x \vee \perp=x \text { for all } x \in P \\
& x \wedge \top=x \text { for all } x \in P
\end{aligned}
$$

(g) Use this to show that T, \perp can also be defined as suprema and infima:

$$
T=\inf \varnothing \quad \perp=\sup \varnothing
$$

(h) Prove that, when P is a finite lattice, T and \perp can be computed as follows.

$$
\top=\sup P \quad \perp=\inf P
$$

(i) Show that, in an infinite lattice, T and \perp need not exist.
1.2. Problem 2. Let $\mathbb{P}_{n}=p_{0} \cdot p_{1} \cdots p_{n-1}$, be the product of the first n primes. Construct an explicit isomorphism

$$
(\mathcal{P} \mathbf{n}, \subseteq) \stackrel{\cong}{\Longrightarrow}\left(\left\langle\mathbb{P}_{n}\right\rangle, \mid\right),
$$

i.e. give rules for monotone maps f, g of type

$$
\begin{aligned}
f: \mathcal{P} \mathbf{n} & \rightarrow\left\langle\mathbb{P}_{n}\right\rangle \\
g:\left\langle\mathbb{P}_{n}\right\rangle & \rightarrow \mathcal{P} \mathbf{n}
\end{aligned}
$$

and demonstrate that $g \circ f=\mathbb{1}_{\mathcal{P} \mathbf{n}}$ and $f \circ g=\mathbb{1}_{\left\langle\mathbb{P}_{n}\right\rangle}$.

1.3. Problem 3.

(a) Prove that

$$
\operatorname{cof}:\langle n\rangle^{\mathrm{op}} \rightarrow\langle n\rangle:: a \mapsto \frac{n}{a}
$$

forms a Galois connection with its opposite.
(b) Express the De Morgan laws for this Galois connection.
(c) Select n in the above De Morgan laws so as to deduce the famous identity

$$
a \cdot b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)
$$

1.4. Problem 4. Let $f: X \rightarrow Y$ be a map and $f^{*}: \mathcal{P} Y \rightarrow \mathcal{P} X$ be its preimage. Define the direct image as:

$$
f_{*}: \mathcal{P} X \rightarrow \mathcal{P} Y:: S \mapsto\{f(s) \mid s \in S\}
$$

(a) Show that f_{*} is monotone.
(b) Show that $\left(f_{*}, f^{*}\right)$ is a Galois connection.
(c) Write the two de Morgan laws implied by the above Galois connection.
(d) Provide a map $f: X \rightarrow Y$ for which there exist $A, B \subseteq X$ such that

$$
f_{*}(A \cap B) \neq f_{*}(A) \cap f_{*}(B)
$$

(e) Prove directly that, in contrast

$$
f^{*}(A \cup B)=f^{*}(A) \cup f^{*}(B)
$$

Lament this asymmetry. Now define the indirect image as:

$$
f_{!}: \mathcal{P} X \rightarrow \mathcal{P} Y:: S \mapsto\left\{y \in Y \mid f^{*}(y) \subseteq S\right\}
$$

(f) Show that $f_{!}$is monotone.
(g) Show that $\left(f^{*}, f_{!}\right)$is a Galois connection.
(h) Write the corresponding de Morgan laws. What do you notice?
(i) Provide a map $f: X \rightarrow Y$ for which there exist $A, B \subseteq X$ such that

$$
f_{!}(A \cup B) \neq f_{!}(A) \cup f_{!}(B)
$$

(j) Show that the direct image f_{*} is equal to the map below

$$
f_{\exists}: \mathcal{P} X \rightarrow \mathcal{P} Y:: S \mapsto\left\{y \in Y \mid \exists x \in f^{*}(y), x \in S\right\} .
$$

(k) Show that the indirect image $f_{\text {! }}$ is equal to the map below

$$
f_{\forall}: \mathcal{P} X \rightarrow \mathcal{P} Y:: S \mapsto\left\{y \in Y \mid \forall x \in f^{*}(y), x \in S\right\} .
$$

(l) Discuss the higher symmetry that resolved what seemed to be an asymmetry.

