2. Assignment 2

2.1. Problem 1. For any category \mathcal{C} and object $c \in|\mathcal{C}|$, prove that there is a category, which we denote by \mathcal{C} / c and call the slice category over c, whose objects are arrows $f: X \rightarrow c$ with codomain c and morphisms $[f: X \rightarrow c] \rightarrow[g: Y \rightarrow c]$ are arrows $\varphi: X \rightarrow Y$ for which the following triangle commutes.

Analogously, show that there is a category, which we denote by c / \mathcal{C} and call the slice category under c, whose objects are arrows $f: c \rightarrow X$ with domain c and morphisms $[f: c \rightarrow X] \rightarrow[g: c \rightarrow Y]$ are arrows $\varphi: X \rightarrow Y$ for which the following triangle commutes.

Prove that c / \mathcal{C} is the same as $\left[\mathcal{C}^{\mathrm{op}} / c\right]^{\mathrm{op}}$.
2.2. Problem 2. An arrow $f: X \rightarrow Y$ is said to be a monomorphism if for all pairs $g, g^{\prime}: W \rightarrow X$, the following condition holds:

$$
f g=f g^{\prime} \Rightarrow h=h^{\prime}
$$

Dually, $f: X \rightarrow Y$ is said to be an epimorphism if for all $h, h^{\prime}: Y \rightarrow Z$:

$$
h f=h^{\prime} f \Rightarrow h=h^{\prime} .
$$

Prove that $f: X \rightarrow Y$ in Set is monomorphism if and only if f is injective, and an epimorphism if and only if f is surjective.
2.3. Problem 3. Show that, given a category \mathcal{C}, there is a functor

$$
\mathcal{C}(-,-): \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \rightarrow \text { Set }
$$

given by the rules

- $(X, Y) \mapsto \mathcal{C}(X, Y)$ on an object (X, Y)
- $\mathcal{C}(f, g): \mathcal{C}(X, Y) \rightarrow \mathcal{C}(W, Z):: \varphi \mapsto f / / \varphi / / g$ on an arrow $(W \xrightarrow{f} X, Y \xrightarrow{g} Z)$.
2.4. Problem 4. Consider the category $\mathbb{Q}=0 \rightarrow 1$. Let $F_{0}, F_{1}: \mathcal{C} \rightarrow \mathcal{D}$ be functors and define the inclusion functors $\mathcal{C}_{i}: \mathcal{C} \rightarrow \mathcal{C} \times \mathcal{D}:: X \mapsto(X, i)$ for $i=1,2$. Let $\mathcal{T}: \mathcal{C} \times \mathcal{D} \rightarrow \mathcal{D}$ be a functor such that $\mathcal{T} \circ \mathcal{C}_{i}=F_{i}$. Prove that \mathcal{T} gives a natural transformation $F_{0} \rightarrow F_{1}$. In turn, given a natural transformation $T: F_{0} \rightarrow F_{1}$, prove that it can be recast as a functor $\mathcal{C} \times \mathscr{D} \rightarrow \mathcal{D}$.

2.5. Problem 5.

(a) Let $(P, \preceq),(Q, \sqsubseteq)$ be preorders. Prove that $\operatorname{Pre}(P, Q)$ is a preorder.
(b) If $(P, \preceq),(Q, \sqsubseteq)$ are posets, prove that $\operatorname{Pos}(P, Q)$ is a poset.
(c) If $(P, \preceq),(Q, \sqsubseteq)$ are total orders, prove that $\boldsymbol{\operatorname { T o t }}(P, Q)$ is not a total order.
(d) Show that any set map $X \rightarrow P$ is automatically a monotonic map $\mathbf{D} X \rightarrow P$.
(e) Let \mathbb{B} have the posetal structure given by the relation $\perp \preceq \top$. Given two maps $\mathbf{P}, \mathbf{Q}: \mathbf{D} X \rightarrow \mathbb{B}$, interpreted as predicates (i.e. conditions), describe the logical interpretation of the existence of a natural transformation $\mathbf{P} \rightarrow \mathbf{Q}$.
(f) Describe the join, meet, top, and bottom in the poset $[X ; \mathbb{B}]:=\operatorname{Pos}(\mathbf{D} X, \mathbb{B})$.
(g) Prove the monotonicity of the map $\iota: \mathbb{B} \rightarrow[X ; \mathbb{B}]:: * \mapsto \lambda x . *$.
(h) Prove the monotonicity of the map $\exists:[X ; \mathbb{B}] \rightarrow \mathbb{B}:: \mathbf{P} \mapsto \begin{cases}\top & \exists x, \mathbf{P}(x)=\top \\ \perp & \text { otherwise }\end{cases}$
(i) Prove that (\exists, ι) is a Galois connection.
(j) This guarantees that $\exists(\mathbf{P} \vee \mathbf{Q})=\exists \mathbf{P} \vee \exists \mathbf{Q}$. Explain why $\exists(\mathbf{P} \wedge \mathbf{Q}) \neq \exists \mathbf{P} \wedge \exists \mathbf{Q}$.
(k) Prove the monotonicity of the map $\forall:[X ; \mathbb{B}] \rightarrow \mathbb{B}:: \mathbf{P} \mapsto \begin{cases}\top & \forall x, \mathbf{P}(x)=\top \\ \perp & \text { otherwise }\end{cases}$
(l) Prove that (ι, \forall) is a Galois connection.
(m) This guarantees that $\forall(\mathbf{P} \wedge \mathbf{Q})=\forall \mathbf{P} \wedge \forall \mathbf{Q}$. Explain why $\forall(\mathbf{P} \vee \mathbf{Q}) \neq \forall \mathbf{P} \vee \forall \mathbf{Q}$.
(n) Let $\mathcal{P}:$ Set $^{\mathrm{op}} \rightarrow \mathbf{P o s}$ be the contravariant powerset functor. Construct a natural isomorphism $T:[-; \mathbb{B}] \stackrel{\cong}{\Longrightarrow} \mathcal{P}: \boldsymbol{S e t}^{\mathrm{op}} \rightarrow \mathbf{P o s}$.
2.6. Problem 6. Consider the dual functor $\operatorname{Vect}_{k}(-, k): \operatorname{Vect}_{k}^{\mathrm{op}} \rightarrow \operatorname{Vect}_{k}$. We write $V^{*}=\operatorname{Vect}_{k}(V, k)$ for the dual space of V. Suppose V has a basis $\mathcal{E}=\left(\mathbf{e}_{i}\right)_{i=1}^{n}$.
(a) Show that V^{*} has a basis $\mathcal{E}^{*}=\left(\mathbf{e}^{i}\right)_{i=1}^{n}$ given by $\mathbf{e}^{i}\left(\mathbf{e}_{j}\right)=\delta_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}$
(b) As usual, the basis vectors $\left(\mathbf{e}_{i}\right)_{i=1}^{n}$, when expressed via the coordinates they induce, can be expressed as standard column vectors:

$$
\mathbf{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad \mathbf{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right] \quad \cdots \quad \mathbf{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

Show that the vectors $\left(\mathbf{e}^{i}\right)_{i=1}^{n}$, when conceived of as linear maps $V \rightarrow k$ in the basis \mathcal{E} can be expressed as standard row vectors:

$$
\mathbf{e}^{1}=\left[\begin{array}{llll}
1 & 0 & \ldots & 0
\end{array}\right] \quad \mathbf{e}^{2}=\left[\begin{array}{llll}
0 & 1 & \ldots & 0
\end{array}\right] \quad \ldots \quad \mathbf{e}^{n}=\left[\begin{array}{llll}
0 & 0 & \ldots & 1
\end{array}\right]
$$

(c) Prove that the linear map $\xi_{V}: V \rightarrow V^{*}:: \mathbf{e}_{i} \mapsto \mathbf{e}^{i}$ is an isomorphism for all V.
(d) Although this is perhaps unintuitive, ξ_{V} does not extend to a natural transformation $\mathbb{1}_{\text {Vect }_{k}} \rightarrow(-)^{*}$. Consider the map $L: k^{2} \rightarrow k^{2}::(a, b) \mapsto(2 b, a)$. Show that the following naturality diagram fails to commute.

(e) In contrast, there is a map $\zeta_{V}: V \rightarrow V^{* *}:: v \mapsto \lambda \varphi \cdot \varphi(v)$ to the double dual $V^{* *}=\operatorname{Vect}_{k}\left(V^{*}, k\right)$. Show that this map extends to a natural transformation.
(f) Prove that for any $V, \operatorname{ker} \zeta_{V}=0$. Conclude that $\zeta: \mathbb{1}_{\text {Vect }_{k}} \rightarrow(-)^{* *}$ is a natural isomorphism. You may assume that $\operatorname{dim} V=\operatorname{dim} V^{* *}$.

