2. ASSIGNMENT 2

2.1. Problem 1. For any category C and object ¢ € |C|, prove that there is a
category, which we denote by C/c and call the slice category over ¢, whose objects
are arrows f : X — ¢ with codomain ¢ and morphisms [f : X — ] = [g: Y — (]
are arrows ¢ : X — Y for which the following triangle commutes.

X —F Ly

N

Analogously, show that there is a category, which we denote by ¢/C and call the
slice category under c, whose objects are arrows f : ¢ — X with domain ¢ and
morphisms [f : ¢ = X]| = [g : ¢ = Y] are arrows ¢ : X — Y for which the

following triangle commutes.

X —_— Y
Prove that ¢/C is the same as [C°P/c]°P

2.2. Problem 2. An arrow f : X — Y is said to be a monomorphism if for all
pairs g,¢' : W — X, the following condition holds:
fog=fg =h="r.
Dually, f : X — Y is said to be an epimorphism if for all h,h' : Y — Z:
hf =hf=h="H.
Prove that f : X — Y in Set is monomorphism if and only if f is injective, and an

epimorphism if and only if f is surjective.

2.3. Problem 3. Show that, given a category C, there is a functor
C(—,—):C®” xC — Set
given by the rules
e (XY)— C(X,Y) on an object (X,Y)
o C(f,9): C(X,)Y) = C(W,Z) :: ¢ f /) gonanarrow (W ERN X, v % 7).

2.4. Problem 4. Consider the category 2 =0 — 1. Let Fp, F; : C — D be functors
and define the inclusion functors C; : C — C x 2 = X — (X,i) for ¢ = 1,2. Let
T :C x 2 — D be a functor such that 7 oC; = F;. Prove that 7 gives a natural
transformation Fy — Fj. In turn, given a natural transformation T : Fy, — F,
prove that it can be recast as a functor C x 2 — D.

. Problem 5.

) Let (P, =), (Q,C) be preorders. Prove that Pre(P, Q) is a preorder.

) If (P, =), (Q,C) are posets, prove that Pos(P, Q) is a poset.

) If (P, =), (Q,C) are total orders, prove that Tot(P, Q) is not a total order.

) Show that any set map X — P is automatically a monotonic map DX — P.
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(e) Let B have the posetal structure given by the relation L < T. Given two maps
P,Q: DX — B, interpreted as predicates (i.e. conditions), describe the logical
interpretation of the existence of a natural transformation P — Q.

(f) Describe the join, meet, top, and bottom in the poset [X;B] := Pos(DX,B).

(g) Prove the monotonicity of the map ¢ : B — [X;B] :: x — Az.x.

(h) Prove the monotonicity of the map 3: [X;B] =B : P — {T 3, P(x) =T

1 otherwise

(i) Prove that (3,¢) is a Galois connection.
(j) This guarantees that 3(P Vv Q) = 3P v 3Q. Explain why 3(P A Q) # FP A3Q.
T Va,P(x)=T

(k) Prove the monotonicity of the map V: [X;B] > B :: P — i
1 otherwise

)
)
)
1) Prove that (:,V) is a Galois connection.

(m) This guarantees that V(P A Q) = VP AVQ. Explain why V(P Vv Q) # VP v VvQ.
)

(n) Let P : Set°® — Pos be the contravariant powerset functor. Construct a
natural isomorphism T : [—;B] =, P : Set® — Pos.

2.6. Problem 6. Consider the dual functor Vecty(—,k) : Vect;” — Vecty,. We

write V* = Vecty (V, k) for the dual space of V. Suppose V has a basis £ = (e;)?_;.

1 i=j

0 i#j

(b) As usual, the basis vectors (e;)!_;, when expressed via the coordinates they
induce, can be expressed as standard column vectors:

(a) Show that V* has a basis £* = (e')"_; given by e‘(e;) = §;; =

1 0 0

0 1 0
ey = |. €y = e =

0 0 1

Show that the vectors (€)™, when conceived of as linear maps V — k in the
basis £ can be expressed as standard row vectors:

e'=[1 0 ... 0] €=[01 .. 0 - e'=[0 0 ... 1]
(c) Prove that the linear map &y : V. — V* i e; — €' is an isomorphism for all V.
(d) Although this is perhaps unintuitive, £, does not extend to a natural transfor-
mation lvect, — (—)*. Consider the map L : k? — k? :: (a,b) — (2b,a). Show
that the following naturality diagram fails to commute.

2 Pr2 (kz)*

e
k2 W (k2)*

(e) In contrast, there is a map Cy : V. — V** =t v = Ap.p(v) to the double dual
V** = Vect(V*, k). Show that this map extends to a natural transformation.

(f) Prove that for any V, ker(y = 0. Conclude that ¢ : Ivect, — (—)** is a
natural isomorphism. You may assume that dim V' = dim V**.



