
0. Preliminaries

A set X is a collection of elements. When x is an element of X, we write x ∈ X.
When a setX consists of specified elements x, y, . . . , we writeX = {x, y, . . . }. What
follows is a list of sets whose notation and name we fix throughout the sequel.

• the empty or null set ∅ = {}
• the generic singleton ? = {∗}
• the Booleans B = {>,⊥}, where > is “true” and ⊥ is “false”
• the generic n-element set n = {0, 1, . . . n− 1}
• the natural numbers N = {0, 1, . . . }
• the integers Z = {· · · − 1, 0, 1, . . . }

Two sets A,B are said to be equal, in which case we may write A = B, when
x ∈ A if and only if x ∈ B. We note that ∅ = 0, and hence these can be used
interchangeably. The cardinality of a set is its number of elements. Although ? and
1 are not equal, they both aspire towards being “generic” sets of cardinality 1 and
are hence interchangeable since their respective elements are mere placeholders. In
both cases, we will choose the notation whose evocation best matches the context.

We say A is a subset of X and write A ⊆ X when x ∈ A implies x ∈ X. When
we wish to define a subset B from a set X that keeps only the elements of X that
satisfy some predicate, i.e. condition, P, we write B = {x ∈ X | P(x)}. One reads
each term in this expression using the following dictionary:

{} “the set of”
x ∈ X “x’s in X”
| “such that”

P(x) “the predicate P holds for x”

Alternatively, we may also write this set via the shorthand X|P, which should be
read as “the set X, restricted to its elements that satisfy P.” For example, we write
Z|≤3 = {. . . ,−3,−2, . . . , 2, 3}, or sometimes, when unambiguous, as simply Z≤3,
omitting the ‘|’ symbol altogether. This style of specifying sets—via elements of
an ambient set for which a specified predicate holds—is called set-builder notation.
We can express many familiar constructions this way. For example, the powerset
PX = {S ⊆ X} is the set of all subsets of X. Furtheremore, given two subsets
A,B ⊆ X, i.e. elements A,B ∈ PX, we can use this notation to define the following
two new subsets.

• the union A ∪B = {x ∈ X | x ∈ A or x ∈ B}
• the intersection A ∩B = {x ∈ X | x ∈ A and x ∈ B}

We say that two subsets A,B ⊆ X are disjoint when A∩B = ∅. We say that A,B
are exhaustive when A∪B = X. We say that A,B partition X when they are both
disjoint and exhaustive.

More generally, we can write some expression to the left of the ‘|’ instead of
just the element x ∈ X. In this case, we use the convention that the set to which
each element in the expression belongs is written to the right of the ‘|’ symbol. For
example, we can define the set Q of rational numbers using this notation:

Q = {pq | p, q ∈ Z, q 6= 0}

In this case our set consists of expression given by the fractions p/q, whose con-
stituent terms p, q are subject to the condition that they are integers, and that q

1

2

is subject to the condition that it does not equal 0. Note that we have thus far
employed commas as an informal “and.”

The flip side of restricting a set is excluding from a set. More precisely, when
S ⊆ X, we write X \S = {x ∈ X | x /∈ S} = X|/∈S . Then, if P′ is the negation of P,
we have that X|P′ = X \X|P. We will more often characterize sets via restrictions
than exclusions.

We now introduce some fundamental abstract operations on sets. Unlike the
previous operations—restrictions, unions, intersections, exclusions—these are not
internal operations—those on a subset relative to some ambient set—but rather
are external operations on sets themselves. Given two sets X,Y , we define their
Cartesian product

X × Y = {(x, y) | x ∈ X, y ∈ Y }
as the set of ordered pairs whose first entry is in X and second entry in Y . Given
these sets, we can also form their disjoint union or sum X+Y as the set consisting
of the X-elements alongside the Y -elements. This is not the same as the union! One
takes the union of two subsets A,B ⊆ X of a fixed ambient set X by considering
the set of X-elements that are present in at least one of A or B. This means that an
X-element that appears in both A and B is not double counted. However, we need
this ambient set X in order to even compare elements of A with those of B, since
these a priori have nothing to do with each other. In practice, it has historically
been frustrating to articulate the distinction between these two concepts since most
of the time we express the elements of our two sets X,Y using a shared “alphabet
of symbols,” which implicitly plays the role of ambient set. Generically, however, if
no interaction is pre-specified between two sets X,Y , we cannot even think about
what it would mean to form the classic union, since the elements of each exist
beyond comparison with each other.

Returning to internal operations, we will also be interested in quotients of sets.
This means that, if we have some notion of “equivalence” that is coarser than that of
equality of elements, we can partition the set into mutually disjoint and collectively
exhaustive classes of “equivalent” elements. More formally, an equivalence relation
∼ on a set X is a certain kind of predicate on X×X. We use infix notation x ∼ x′
in place of ∼ (x, x′) to express that “x is related, via ∼, to x′.” This relation must
satisfy the following conditions.

• x ∼ x (reflexivity)
• x ∼ x′ ⇔ x′ ∼ x (symmetry)
• x ∼ x′, x′ ∼ x′′ ⇒ x ∼ x′′ (transitivity)

Given ∼ on X, we write [x] for the equivalence class of x, i.e. the set

X|∼x = {x′ ∈ X | x′ ∼ x}

of X-elements equivalent to x. We then define the quotient X/∼ as the set of ∼-
equivalence classes of X, i.e. X/∼ = {[x] | x ∈ X}. Consider the following example.
Let A consist of the set of points in the United States. Define ∼ by x ∼ y if and
only if x and y belong to the same state. Then, if p is some point on the Duke
University campus, [p] can be identified with the set of points in North Carolina.
We then see that A/∼ = {the fifty states}.

A function, or henceforth, map f of type X → Y , for sets X and Y , is a rule
that assigns each element x ∈ X precisely one element fx ∈ Y . We call X the
domain and Y the codomain of f . We often refer to an element of the domain as

3

an argument and an element of the codomain as a value. We say f takes arguments
in X and takes values in Y . When applying a map f to an argument x, we say it
evaluates to the value fx. When we specify a map by both its type and its rule,
we use the notation

f : X → Y :: x 7→ fx,

which should be read using the following dictionary

f “the map f”
: “of type”

X → Y “X to Y ”
:: “given by”

x 7→ fx “x maps to fx”

We write X
f−→ Y as shorthand for f : X → Y . Sometimes, instead of inserting

‘::’ between the type and the rule, we simply place the rule below the type so as to
align elements with their sets:

X
f−→ Y

x 7→ fx

Two maps f, g : X → Y are said to be equal precisely when fx = gx for all
arguments x ∈ X.

It may be worthwhile to name a map by its rule. We call such a specification an
anonymous declaration. If the intricacy of a situation calls for careful formality, we
will use λ-calculus syntax, which would express our above map via the notation

λx.fx : X → Y

This is particularly useful in expressing situations in which an argument maps to
a function. For example, consider the map I : C∞ → C∞ that sends a smooth map
f to the smooth map given by mapping x to

∫ x
0
f(t)dt. We can write this as

(1) I : C∞ → C∞ :: f 7→ λx.
∫ x

0
f(t)dt

More often, however, we will use the less formal notation f(−), which should eval-
uate an argument x by substituting x in place of the −. For example:

[
∫ x

0
(−)dt](1) = x

If our map involves arithmetic, we will use � in place of (−) to avoid ambiguity.
For every set X, its identity map is defined as

1X : X → X :: x 7→ x.

Given maps

f : X → Y :: x 7→ fx and G : Y → Z :: y 7→ gy

we can form their composition g ◦ f , or simply gf , as

gf : X → Z :: x 7→ gfx.

The composition and identity satisfy two important axioms.

• (associativity) [f ◦ g] ◦ h = f ◦ [g ◦ h], whenever these are composable.
• (identity) f ◦ 1X = f = 1Y ◦ f , for f : X → Y .

4

The following elementary examples serve to demonstrate that map composition
and identity generalize familiar arithmetic operations and identities.

(�+ n) ◦ (�+m) = �+ (n+m)

(� · n) ◦ (� ·m) = � · (nm)

(�+ n) ◦ (�+ 0) = (�+ 0) ◦ (�+ n) = �+ n

(� · n) ◦ (� · 1) = (� · 1) ◦ (� · n) = � · n
We would be remiss not to point out the following frustration. When written as

a string of arrows, our situation is represented by the diagram

X
f−→ Y

g−→ Z,

which automatically renders in many minds as fg instead of gf . This unfortunate
convention is a consequence of the ‘f(x)’ notation, due to Euler, for the evaluation
of an argument x by a map f . When treating historically ossified contexts like
linear algebra, we will bend to this convention. In situations for which it would
heretical to do so, however, we write the above composition in diagrammatic order
as f � g, to be read as “f then g.” In such contexts, we will also write x � f in
place of f(x). This is justified by interpreting each element x ∈ X as the map

x : ?→ X :: ∗ 7→ x.

This notation, with equal precision yet more succinctness and or evocativeness,
recaptures familiar facts in terms of map algebra. For example, we can reconcep-
tualize “completing the square” as factoring—via ◦ not ×—a quadratic map

q : R→ R :: x 7→ ax2 + bx+ c

into the map composition
q = Lv ◦�2 ◦ Lh

for some linear polynomial maps Lv, Lh. For example, the equality on values

q(x) = x2 − 6x+ 16 = (x− 3)2 + 7

can now be recast as the equality on maps

q = (�+ 7) ◦�2 ◦ (�− 3).

This has the advantage of assessing q directly without considering its evaluation on
arguments. Furthermore, this modularizes q into composable sub-processes. This
decomposition, although obscured by the classic notation, is, as we shall soon see,
precisely why completing the square solves quadratic equations.

Sometimes it’s meaningful to consider a map which takes a pair of arguments;
for example addition + or multiplication × of numbers. A binary operation �
taking pairs of X elements as argument and outputting Y values can be conceived
of as a map � : X × X → X. We use the infix notation x � y as shorthand for
�(x, y). A set X with a binary operation defined on it is called a magma. For
example, addition and multiplication of pairs of integers yields an operations of
type Z× Z→ Z. Suppose we wish to iterate � on more than two arguments:

(((w � x)� y)� z).
This operation takes 4 inputs. More generally, we define an n-ary operation as one
that takes n arguments. Such an operation has as domain the Cartesian power

Xn = {(x0, . . . , xn−1) | ∀i ∈ n, xi ∈ X}.

5

We refer to elements of a Cartesian power as tuples. Given a binary operation, the
number of possible n-ary operations we can form from it grows wildly with n. The
situation dramatically simplifies if we suppose further that � is associative:

x� (y � z) = (x� y)� z.
A set X with an associative binary operation is often called a semigroup. We can
then simply write x � y � z without concern for bracketing. Iteratively applying
associativity allows for the unique extension of � to the following n-ary operator
that takes as argument any tuple (xj)

n−1
j=0 = (x0, . . . , xn) ∈ Xn.

n−1⊙
j=0

: Xn → Y :: (xj)
n−1
j=0 7→ x0 � · · · � xn−1

Note that, by convention, we simply write
⊙n−1

j=0 xi in place of
⊙n−1

j=0 (xi)
n−1
i=0 . When

� is invariant under swapping arguments, we say it is commutative:

x� y = y � x.
In this situation, since the order does not matter, � can be extended to an operation
that takes any non-empty finite set J ’s worth of arguments. This can be encoded by
the indexed tuple (xj)j∈J , where we call J the indexing set. We call the extension of
� to such arguments a (finitely) indexed operation. Since an indexed tuple (xj)j∈J
can be seen as a map J → X :: j 7→ xj , the domain of this operation should be the
set of such maps [J → X]. We then denote the indexed operation as follows.⊙

j∈J
: [J → X]→ Y.

Note that, since the n-ary version can be seen as the special case of the above, we
have that Xn is in some sense “the same” as [n → X]. We will investigate this
sameness in future lectures.

Sometimes, for the sake of encoding structure more systematically, we may also
be interested in the nullary version of �, i.e. one that takes zero arguments. What
exactly could this mean? The idea is that this should be the X element, if one such
exists, that is inert under �.

Given two indexing sets J, I with indexed tuples (xj)j∈J and (xj)j∈I in X, we
can form the combined indexed tuple (xj)j∈J+I with indexing set J + I. Applying
this situation to our operators yields the following identity.

⊙
j∈J+I

xi =

⊙
j∈J

xi

�
⊙
j∈I

xi

Note that, in the situation that I is the empty set ∅, J + I is essentially just J .
This reduces the above to:⊙

j∈J
xi =

⊙
j∈J

xi

�
⊙
j∈∅

xi

When J is a singleton {j}, and we denote xj simply as x, we have the following.

x = x�

⊙
j∈∅

xi

6

Since J + ∅ and ∅ + J are both equivalent to J , this is also equal to swapping
factors on the right hand side. Therefore we define the nullary � operation to be
the constant map that picks out the inert or unit element ε of �. More formally,
we say that � satisfies unitality with unit ε when for any x ∈ X:

ε� x = x = x� ε.

A set X with an associative operation that has a unit is called a monoid. Let’s
apply this principle to the operations + and ×, whose n-ary extensions are denoted
with the symbols

∑
and

∏
, respectively.∑
j∈∅

xj = 0
∏
j∈∅

xj = 1.

In the special case that xj = j, the latter reduces to the fact that 0! = 1.
We may also consider the union and intersection as binary operations PX ×

PX → PX. These are associative and unital with the following nullary forms:⋃
j∈∅

Sj = ∅
⋂
j∈∅

Sj = X.

We now return to the context of general maps f : X → Y . Given a subset A ⊆ Y ,
we define its preimage under f as

f∗(A) = {x ∈ X | fx ∈ A}.

We would like to conceive of f∗ as a map. Since it takes arguments and values in
subsets it is a map of type PY → PX. We can restrict this map to singletons {y}
in Y . In this case, we abuse notation and write f∗ : Y → PX. We use this map to
define the jectivity properties of f ; in particular, we say that f is

• surjective if for all y ∈ Y , f∗(y) has at least 1 element
• injective if for all y ∈ Y , f∗(y) has at most 1 element

These properties have an interpretation in the context of equations. An equation

f(x) = y

is merely a prompt, given a map f and a value y ∈ Y , to compute the preimage
f∗(y). We say that f has the

• existence property if for all y ∈ Y , there exists a solution to f(x) = y
• uniqueness property if for all y ∈ Y , any solution to f(x) = y is unique

To write expressions for solutions to equations [g ◦ f](x) = z that involve map

compositions X
f−→ Y

g−→ Z, we simply apply iterated preimages:

PZ g∗−→ PY f∗−→ PX

As an example, consider the equation tan2(x) = 3, which can be rewritten as

[�2 ◦ tan](x) = 3.

Before solving our equation, we compute the relevant reduced preimages

tan∗ : R→ PR :: x 7→ {arctanx+ 2πn | n ∈ Z} =: arctanx+ 2πZ
[�2]∗ : R→ PR :: x 7→ {

√
x,−
√
x} =: ±

√
x.

7

We now compute our solution set A:

A = [(tan)∗ ◦ (�2)∗](3)

= (tan)∗(±
√

3)

= arctan(±
√

3) + 2πZ

= ±π
3

+ 2πZ

Applying this to the context of a quadratic map q, its roots can be expressed as

[L∗h ◦ [�2]∗ ◦ L∗v](0).

We say that f is bijective when it is both surjective and injective. In this case,
for each y ∈ Y , there is always precisely one element x ∈ X such that fx = y. This
allows us to construct a map f−1 : Y → X sending y to this unique element. In
other terms, f∗(y) is a singleton {x} and, since it is precisely this sole element x to
which y gets sent, we write f−1y = x. We say the map f−1 is the inverse map to
f . Given a map f : X → Y , its inverse map g : Y → X is a map such that

g ◦ f = 1X

f ◦ g = 1Y .

We say f : X → Y is invertible, or an isomorphism when it has an inverse map.

We then write f : X
∼=−→ Y or, when we wish to speak directly about the sets in

consideration, we write X ∼= Y and say that “X is isomorphic to Y .” This language
allows us to formalize our remark about singleton sets: ? ∼= 1; or in general any
pair of sets of the same cardinality, e.g. B ∼= 2.

Just as map composition generalizes numeric addition and multiplication, map
inverse generalizes additive and multiplicative inverse.

(�+ n) ◦ (�+ [−n]) = �+ 0

(� · n) ◦ (� · n−1) = � · 1

In other words: (�+n)−1 = (�+[−n]) and (�·n)−1 = (�·n−1). This also sheds
light on the adage “you can’t divide by 0”—the map (� · 0) amounts to the rule
x 7→ 0, which is surely neither injective nor surjective, and hence non-invertible.

This language inspires a reprisal of the fundamental theorems of calculus. We
encode the derivative as D : C∞ → C∞ :: f 7→ f ′, the integral as the map I in
Equation (1), and the needed shifting adjustment as

σ : C∞ → C∞ :: f 7→ λx.[f(x)− f(0)].

Then the first and second fundamental theorems can be rewritten as follows.

I ◦D = σ

D ◦ I = 1C∞

These equations encode precisely how the derivative and integral are “inverse” to
each other: I is a right inverse but not a left inverse to D—it is however rather
close to being a left inverse since it is only off by a shift. This shift is of course the
consequence of the arbitrary constant that gets lost in the process of differentiating
and hence, instead of being recovered, is replaced by a default constant f(0).

The preimage notion also facilitates a more algebraic repackaging of set-builder
notation. We can consider a predicate P on X as a map P : X → B, in which case

8

we should write P(x) = > in place of just P(x) for “x satisfies P.” In turn, this
added detail allows us to encode the set as a preimage of > under P:

P∗(>) = {x ∈ X | P(x) = >}.
Aside from aesthetics, why would one care to do this? This notation throws in
relief the correspondence between logical and set theoretic constructions. We list
some examples in the following table, whose first two columns correspond to the
informal and symbolic logical expressions.

P implies Q P ⇒ Q P ∗(>) ⊆ Q∗(>)
P if and only if Q P ⇔ Q P ∗(>) = Q∗(>)

P or Q P ∨Q P ∗(>) ∪Q∗(>)
P and Q P ∧Q P ∗(>) ∩Q∗(>)

Making these relations explicit in the notation can allow for more succinct proofs
via immediate symbolic reasoning. I’m of the belief that a goal of mathematical
notation should be the excising of indirect, seemingly necessary, verbal fillers like
“such that” from one’s inner monologue.

We end the section by noting an important isomorphism.

Proposition 0.1. The following is an isomorphism

λϕ.ϕ∗(>) : [X → B]→ PX.

Proof. The inverse of this map is given by the map >(−) : PX → [X → B], which
maps a subset S ⊆ X to the following so called indicator map,

>S : X → B :: x 7→

{
> x ∈ S
⊥ x /∈ S

By construction [>S]∗(>) = S and >ϕ∗(>) = ϕ. �

9

1. Order Theory

We now define our first structured object.

Definition 1.1. A preorder (P,�) consists of the data

• a set P
• a map �: P × P → B, called a relation, writing x � y for � (x, y) = >,

satisfying the conditions

• x � x (reflexivity)
• x � y, y � z ⇒ x � z (transitivity)

We say that (P,�) is a partially ordered set, or partial order, or poset if furthermore

• x � y, y � x⇒ x = y (antisymmetry)

We say the poset (P,�) is a total order or linear order if in addition

• x � y or y � x (completeness)

We say that two preorders (P,�) and (P ′,�′) are equal if and only if P = P ′

and �=�′: P × P → B.
One family of total orders is given by numerical sets n,N,Z,Q, . . . with the

relation ≤. In a similar vein, since false formally implies true, i.e. ⊥ ⇒ >, we have
the total order (B,⇒). All finite cardinality total orders are essentially equivalent;
or, as we shall soon define, isomorphic; to (n,≤). Things become interesting in the
case of infinite cardinality, as in the theory of ordinals, which we will not discuss.

It will be visually helpful—and soon formally meaningful—to represent a pre-
order (P,�) by a so called Hasse Diagram. This diagram is drawn by arranging the
elements—often strategically—on the page and then drawing an arrow x → y to
represent x � y. For the sake of readability, when x � y and y � z we do not draw
an arrow x → z; rather, we take advantage of transitivity and draw the minimum
number of arrows that imply the remaining ones, now visually encoded as a path of
directed edges. Furthermore, by reflexivity, we never draw a loop from a vertex to
itself. This can be absorbed into the path semantics via conceiving of there always
being a length 0 path from a vertex to itself. This procedure of omitting implied
arrows is called the transitive reduction of (P,�). For example, we can represent
(n,≤) as the diagram

0→ 1→ 2→ · · · → n− 1.

Using this language, we can draw any directed graph, i.e. a set of vertices (standing
for elements) and a set of arrows or directed edges between them, and conceive of
it as the Hasse Diagram for a preorder (P,�), where P is the set of vertices and �
corresponds to the existence of a path of arrows. We call the procedure of taking
a directed graph and conceiving of it as a poset its transitive closure. We can then
define the transitive reduction, and hence Hasse Diagram, of (P,�) as the smallest
directed graph whose transitive closure is (P,�). We can now use this practice to
generate preorders via pictures. For example, the following diagram represents the
simplest preorder that isn’t a poset.

x y

For the time being, we will focus on nonlinear posets, or ones that aren’t totally
ordered. The simplest example of such is given by the following two posets.

x→ y ← z x← y → z

10

Note that if we reverse the arrows on one of these posets, we get the other poset.
We then say the latter is the opposite preorder of the former, and vice versa. More
formally, for a preorder (P,�), we write (P,�)op for its opposite preorder, given
by precomposing �: P × P → B with the map λ(x, y).(y, x) : P × P → P × P . Or,
equivalently: x � y in (P,�) if and only if y � x in (P,�)op. Note that we have
that (−)op is an involution, i.e.

[(P,�)op]op = (P �).

We now introduce one of the most famous family of posets: (PX,⊆). We draw
below the Hasse Diagram for the case of X = {a, b, c}.

(2)

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

∅

Note that this forms a cube. This is for good reason: by PX ∼= [X → B], which,

if we compose with an isomorphism B
∼=−→ 2 :: > → 1, a map X → 2. Then, if we

order the elements of X; i.e. choose an isomorphism X
∼=−→ n, for n the cardinality

of X; we can view this map as assigning each subset of X a tuple of 0’s and 1’s.
If we conceive of these tuples as representing coordinates in Rn, then we precisely
have the unit n-cube centered at the origin.

(3)

(1, 1, 1)

(1, 1, 0) (1, 0, 1) (0, 1, 1)

(1, 0, 0) (0, 1, 0) (0, 0, 1)

(0, 0, 0)

Given a preorder (P,�) and a subset Q ⊆ P , we can let Q inherit the preorder
structure from P to form the suborder (Q,�). We now define two significant classes
of suborders. Given an element x ∈ P , we define its upper set Ux and lower set Lx
as follows.

Ux(P,�) = {y ∈ P | x � y}
Lx(P,�) = {y ∈ P | y � x}

11

When clear from context, we will suppress the (P,�) from the notation. An upper
or lower set uniquely specifies an element. More formally, we have the following.

Proposition 1.2. Let x, y ∈ P for a poset (P,�). Let Ux and Uy be the respective
upper sets for x and y, and suppose that Ux = Uy. Then we have that x = y.

Proof. By reflexivity, x ∈ Ux, y ∈ Uy. Hence, supposing Ux = Uy, x ∈ Uy, y ∈ Ux.
Then x � y and y � x, and therefore, by antisymmetry, x = y. �

Recalling the opposite construction, we remark that

Lx(P,�) = Ux(P,�)op.

We can conclude, via involutivity, that the same holds if we swap the place of U and
L. We will exploit this so called duality to derive facts about lower sets from facts
about upper sets–for example, Proposition 1.2. We will hence focus our attention
on upper sets. Let’s redraw the Hasse diagram for (P{a, b, c},⊆), coloring red the
directed edges belonging to U{a} and blue the directed edges belonging to U{b}. In
the situation where an edge belongs to both U{a} and U{c}, we will—exclusively for
the sake of readability—draw the edge twice, once in each color.

(4)

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

∅

Consider the suborder U{a} ∩ U{c} with Hasse Diagram

{a, c} → {a, b, c},
given by the suborder consisting of doubly colored edges in the above Hasse diagram.
Observe that this suborder is precisely U{a,c} and that, furthermore, {a, c} is the
union of the sets {a} and {c}. Hence we have that U{a}∪{c} = U{a} ∩ U{c} This
holds true for any pair of subsets S, T ⊆ X as elements in (PX,⊆); i.e

US∪T = US ∩ UT
We say that the set union ∪ is the join, denoted ∨, of (P,⊆).

Definition 1.3. Given a preorder (P,�) and two elements x, y ∈ P , their join x∨y
is characterized by the following property. Given any element t ∈ P , we write

x � t, y � t
x ∨ y � t

This diagram should be read as “given that which is above the line, we can deduce
that which is below the line.” The fact that the line is doubled means that the
reverse also holds: “given that which is below the line, we can deduce that which
is above the line.” Hence this encodes the fact that a pair of relations x � t, y � t
is equivalent data to the single relation x ∨ y � t.

12

Since the statement x � t is equivalent to t ∈ Ux, then x � t, y � t is equivalent
to t ∈ Ux ∩ Uy and x ∨ y → t is equivalent to t ∈ Ux∨y. This implies that an
equivalent characterization of the join can be given in terms of upper sets:

Ux∨y = Ux ∩ Uy.

Given this definition of the join, we can define the dual concept, called the meet
x∧y of two elements x, y ∈ P , as the join of x and y in the opposite order (P,�)op.
From this, we can characterize the meet in terms of upper sets as

Lx∧y = Lx ∩ Ly,

or, alternatively, in a logical formulation, as

t � x, t � y
t � x ∧ y

This is our first example of a universal property. These are by some considered the
object of study of category theory. They also always come in dual pairs.

Let’s return to our example of the powerset order. Just as we characterized the
set union order-theoretically as the join, we remark that the set intersection ∩ is
the meet ∧ in (PX,⊆). The line of thought is merely the dual of the above; but,
given that a picture is worth a thousand words, we depict, by respectively coloring
their lower sets red and blue, the fact that the meet of {a, c} and {b, c} is {c}, their
intersection.

(5)

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

∅

We remark that in the context of conceiving of these diagrams as cubes, that the
upper and lower sets are faces and their intersection is an edge. We will return to
this idea in our forthcoming reprisal of linear algebra.

Note that, if x � y in a poset (P,�) then Uy ⊆ Ux and Lx ⊆ Ly. This implies
that x ∨ y = y and x ∧ y = x. Then, in the context of a total order, since x � y
or y � x, the join and meet concepts simply reduce to determining which of the
arguments is respectively bigger and smaller. For example, in the context of (N,≤),
we have that join and meet reduce to maximum and minimum.

n ∨m = max(n,m)

n ∧m = min(n,m)

Let’s now consider another family of examples. Let n ∈ N and denote by 〈n〉
the set of k ∈ N for which k|n, i.e. which divide n. Then we have a poset (〈n〉, |).

13

We now draw the Hasse diagram in the case of n = 30, coloring red and blue the
upper set of 2 and 5, respectively.

(6)

30

6 10 15

2 3 5

1

Note that, up to relabelling vertices, this is the same Hasse diagram with that
of (P{a, b, c},⊆). The presence of the factors 2, 3, 5 plays the same role as the
inclusion of the elements a, b, c. By the same reasoning as before, we note the join
2∨ 5 = 10. But we also know from above that 10∨ 5 = 10. This is none other than
the least common multiple or lcm. Dually, the meet in this poset is the greatest
common divisor, or gcd.

Note that, when p2|n, such as with n = 12, (〈n〉, |)) is no longer a cube:

(7)

12

4 6

2 3

1

Not every poset enjoys meets and joins for all of its pairs. For example, the poset
on {w, x, y, z} with the following Hasse diagram lacks many meets and joins.

w → x y → z

Definition 1.4. The poset (P,�) is a lattice if for all pairs x, y ∈ P there exists
both join x ∨ y and meet x ∧ y.

Thus far we have considered joins and meets as binary operators. These can be
generalized to operators that accept subsets S ⊆ P as arguments.

Definition 1.5. Given a poset (P,�) and a subset S ⊆ P , we define its least
upper bound or supremum, denoted supS, as the unique elements in P satisfying
the following condition.

supS � z
∀s ∈ S, s � z

Dually, we define its greatest lower bound or infimum, denoted inf S, as the unique
elements in P satisfying the following condition.

14

z � inf S

∀s ∈ S, z � s

In the special case that S = {x, y}, we have that

supS = x ∨ y
inf S = x ∧ y

In the language of upper and lower sets, we can characterize sup and inf as follows.

UsupS =
⋂
s∈S
Us

Linf S =
⋂
s∈S
Ls

In the finite case, we will see—in the first assignment—that the existence of joins
and meets implies the existence of suprema and infima. When S is infinite—or
when S = ∅ and P is infinite—we will see that this is no longer the case. We
say that a lattice closed under both sup and inf is complete. We say (Q,�) is a
completion of (P,�) when P is a sub-order of Q and Q is complete. Famously,
(R,≤) was originally defined as the smallest completion of (Q,≤).

Just as maps are the “verb” to the sets’ “noun,” orders too have a map-notion.

Definition 1.6. A monotone map (P,�)→ (Q,v) consists of

• a map f : P → Q

such that

• x � y ⇒ fx v fy.

An antitone map : (P,�)→ (Q,v) is a monotone map : (P,�)op → (Q,v).

We now list some examples.

(1) (�+ n), (� · t), (�k) : (N,≤)→ (N,≤) for n, k, t ∈ N
(2) (� · t), (�k) : (N, |)→ (N, |) for t, k ∈ N since a|b⇒ (ta)|(tb), ak|bk.
(3) λn.n : (N, |)→ (N,≤) since a|b⇒ a ≤ b.
(4) (−) ∪ T, (−) ∩ T : (PX,⊆)→ (PX,⊆) for T ⊆ X.
(5) the set complement, given by the X elements not in S:

(−)c : (PX,⊆)op → (PX,⊆) :: S 7→ Sc = {x ∈ X | x /∈ S},

since A ⊆ B ⇒ Bc ⊆ Ac.
(6) given a map f : X → Y , its preimage f∗ : (PY,⊆)→ (PX,⊆), since

A ⊆ B ⇒ f∗A ⊆ f∗B.

We now list some non-examples.

(1) �2 : (Z,≤)→ (Z,≤) since (−3) ≤ (−1) but (−1)2 = 1 ≤ 9 = (−3)2.
(2) (�+ k) : (N, |)→ (N, |) for k 6= 0, since 1|p− k but not 1 + k|p for prime p.
(3) λn.n : (N,≤)→ (N, |) since p ≤ q but not p|q for primes p, q.

We say two posets (P,�), (Q,v) are isomorphic if there exist monotone maps
f : (P,�)→ (Q,v) and g : (Q,v)→ (P,�) such that g ◦ f = 1P and f ◦ g = 1Q.
Although a monotone map often has no inverse, it may sometimes possess another
kind of meaningful map going in the reverse direction.

15

Definition 1.7. We say the pair (L,R) of monotone maps L : (P,�) → (Q,v)
and R : (Q,v)→ (P,�) form a Galois connection when:

Lx v y
x � Ry

We call L the left Galois connection of R and R the right Galois connection of L.

It is worth broadcasting a caution that this definition is emphatically asymmetric
in L and R. Let’s consider an example. Define

i : (Z,≤)→ (Q,≤) :: n 7→ n

as the map merely retypes an integer as a rational number, without changing what
we conceive of as its value. How do we go back the other way; i.e. get an integer
from a rational? There’s two particularly available options:

floor : Q→ Z :: q 7→ bqc
ceiling : Q→ Z :: q 7→ dqe,

Which are defined, respectively, as the largest integer less than q and the smallest
integer greater than q. Notice that these definitions take on a similar linguistic
character as those for meets and joins. This is no coincidence, as we shall shortly
investigate further. These statements can actually be reformulated in terms of the
following Galois connections.

i(n) ≤ q
n ≤ bqc

q ≤ i(n)

dqe ≤ n
In other words, (i,floor) and (ceiling, i) are Galois connections. The following—our
first!—theorem justifies why we care about Galois connections.

Theorem 1.8. Let (P,�) and (Q,v) be preorders and (L : P → Q,R : Q → P)
be a Galois connection. Then L preserves suprema and R preserves infima.

Proof.

z ∈ UL(supS) ⇔ L(supS) v z
⇔ supS � Rz
⇔ ∀s ∈ S, s � Rz
⇔ ∀s ∈ S,Ls v z
⇔ ∀s′ ∈ L(S), s′ v z
⇔ supL(S) v z
⇔ z ∈ UsupL(S)

Therefore UL(supS) = UsupL(S), and hence, by Proposition 1.2, L(supS) = supL(S).
Applying (−)op gives the dual result R(inf S) = inf R(S) �

Applying this to our above example, we have that

dsupSe = supdSe
binf Sc = infbSc

16

In the binary case, where the supremum and infimum respectively reduce to the
maximum and mimum of a pair of numbers, it turns out that both ceil and floor
preserve both maxima and minima. These two other facts—that ceil preserves
minima and floor preserves maxima—turn out to be incidental in a way distinct
from those implied by our Galois connections. To see this, we note that this breaks
down in the infinite case. Let S = { 1

n}n∈N, then we have that inf S = 0, and hence

dinf{ 1
n}n∈Ne = d0e

= 0,

but, in contrast

inf d{ 1
n}n∈Ne = inf 1

= 1.

Note that the Galois Connections also imply that i preserves both ceilings and
floors. On one hand, since i does not change its arguments’ “values,” this may
be thought to have been obvious. This turns out, however, to be substantive.
Consider, in contrast, the map λn.n : (N, |) → (N,≤) also leaves its arguments’
values unchanged—the immersion, however, into a new ordering drastically alters
suprema and infima.

We now consider an example of a Galois connection involving antitone maps, or
an antitone Galois connection. Given a set X, we have the antitone complement
map PX → PX. This map can be seen as a monotone map of type either PXop →
PX or PX → PXop. For the sake of being explicit, we respectively name these two
maps comp and comp′. It turns out that (comp, comp′) form a Galois connection.
This says that the following equivalence holds.

comp(S) ⊆ T
S ⊆ comp′(T)

To see this, replace these type-sensitive names with the simpler � notation:

S ⊆ T
S ⊆ T

This can be seen by applying the complement to the top and noting that S = S.
Applying Theorem 1.8, and using the � notation, we see that

S ∪ T = S ∩ T
S ∩ T = S ∪ T .

Note that, since the complement is antitone, it swaps meets and joins in input and
output. The reader may already be familiar with these as the De Morgan Laws.
Given a Galois connection (L,R) between lattices, we will henceforth refer to the
following resultant identities as the De Morgan Laws for (L,R).

L(x ∨ y) = Lx ∨ Ly
R(x ∧ y) = Rx ∧Ry.

We end the section by exploring another consequence of Galois connections.

Proposition 1.9. If (L,R) is a Galois connection on posets, then

LRL = L RLR = R

17

Proof.

reflexivity ⇒ RLx � RLx
⇒ LRLx � Lx

reflexivity ⇒ Lx � Lx
⇒ x � RLx
⇒ Lx � LRLx

Using antisymmetry yields the first identity. Duality yields the second. �

A corollary of this is that LR and RL are both idempotent, i.e.

LRLR = LR RLRL = RL.

In the context of floors and ceilings, this justifies the well known facts

ddxee = dxe bbxcc = bxc.
By rearranging reflexivity, we also have that

x � RLx LRx � x.
We call idempotent monotone operators like RL closure operators, and those like
LR interior operators. Usually the former is the preferred notion. Closure opera-
tors abound in mathematics and formalize a process that chooses for some element
in a poset the least larger element that satisfies some property. For example, if V is
some k-vector space, and we look at PV , we may wish to ask: given S ⊆ V , what
is the smallest subspace U containing S? This is precisely the k-linear span:

kS = {
∑n
i=1 αisi | αi ∈ k, si ∈ S}.

In fact, this closure operator arises from a Galois connection! Let SV be the
suborder of PV consisting of subspaces of V and let i : SV → PV be the inclusion
and k : PV → SV be the k-linear span, thought of as having codomain subspaces.
Then (k, i) is a Galois connection, i.e.

kS ⊆ U
S ⊆ i(U)

This fact—that S is a subset of some subspace U just if its span is a subset of
U—is, given our theory, precisely why the linear span is a closure operator.

18

2. Categories, Functors, and Natural Transformations

We’ll jump straight into the definition.

Definition 2.1. A category C consists of the data

• a collection |C| of objects X,Y, . . .
• a set C(X,Y), called the hom set, of arrows or morphisms f, g, · · · : X → Y
• for any pair f ∈ C(X,Y), g ∈ C(Y,Z), a composition g◦f = f�g ∈ C(X,Z).
• for any X ∈ |C|, a specified identity arrow 1X ∈ C(X,X)

satisfying the conditions

• (f ◦ g) ◦ h = f ◦ (g ◦ h) when these make sense (associativity)
• f ◦ 1X = f = 1Y ◦ f for f : X → Y (unitality)

Remark 2.2. Note that we have a collection of objects and not a set—this is to avoid
Russel’s paradox (the set of all sets that don’t contain themselves) style paradoxes.
When the collection is an actual set, we say that the category is small. Rest assured
that mathematicians have provided this situation a logically valid formal account,
but this discussion is outside the scope of our course.

For f ∈ C(X,Y), we respectively call X and Y the domain and codomain of f .
We say an arrow is an endomorphism when its domain and codomain are equal. We
say a sequence of arrows fi : Xi → X ′i is composable if for all i, Xi+1 = X ′i. When
the category is understood from context, or when we wish to speak about generic
cases, we will write hom(X,Y) for C(X,Y). A subcategory D of C consists of a sub-
collection of C arrows (along with their corresponding domain and codomain) such
that they still assemble into a category. Before presenting examples of categories,
we warn that these will come in two distinct flavors, which one can conceive as
“categories as objects” and “categories of objects.” The former concerns itself with
reinterpreting simpler objects as special cases of categories and the latter concerns
itself with assembling the entire theory of a simpler object into a single category.
We begin with instances of the former.

Example 2.3. Objects we have seen in the prior lectures can be seen as categories.

(1) any set S can be reinterpreted as a category S, whose objects are the
elements of S, and whose morphisms only consist of identity arrows. More
formally, S can be characterized as follows.
• |S| = S

• S(x, y) =

{
{1x} x = y

∅ x 6= y

We call a category C discrete if it only contains identity arrows. We can
hence identify discrete categories with sets.

(2) any preorder (P,�) can be seen as a category P whose objects are again
elements of P , but whose arrows x→ y correspond precisely to statements
x � y, as was visualized in our Hasse diagrams. More formally, P can be
characterized as follows.
• |P | = P

• P (x, y) =

{
? x � y
∅ x 6� y

This perhaps requires some explanation. Recall that ? is a generic singleton.
You may be concerned that we did not label the element contained inside

19

the singleton. The point is that this is not necessary—the singleton merely
signals that there exists an arrow x→ y. Since it is either true or false that
x � y, there is no need to label this arrow. Another way to look at this is to
think of the homs P (X,Y) not as sets but as truth values, i.e. elements of B,
where ? corresponds to > and ∅ to ⊥. This makes P (−,−) : P × P → B,
which aligns entirely with the fact that the type of � was P × P → B.
Furthermore, note that the existence of an identity arrow forces P (x, x) to
be non-empty, thus instantiating reflexivity. In addition, the existence of a
composition x→ z for any pair of arrows x→ y, y → z implies transitivity.
We call a category C thin when C(X,Y) contains at most one element. We
can hence identify thin categories with preorders.

(3) any monoid (M, ·, e) can be seen as a category BM which, in contrast to the
prior examples, has only one object, say •—the name does not matter!—and
whose arrows, which are just the endomorphisms BM(•, •), are precisely
the elements of M . Composition of arrows is then given by our binary
operation and the identity arrow by our identity element. More formally,
BM can be characterized as follows.
• |BM | = {•}
• BM(•, •) = M
• f ◦ g = f · g
• 1• = e

In fact, any one-object category C can be identified with a monoid.

Any subset T ⊆ S yields a subcategory DT of DS. The analogous is true for
suborders of a preorder, such as 〈n〉 of 〈n ·m〉, or submonoids of a monoid, such as
(N,+, 0) of (Z,+, 0).

In addition to these examples, we can depict any finite category (those with a
finite amount of arrows and hence objects), via a quiver, which is merely a gener-
alization of directed graph that allows for multiple edges between any two vertices.
This includes as a special case any Hasse diagram of a poset. A non-thin example
would be categories such as • ∗ .

We now list examples of our second flavor of category, which involve assembling
all objects of a certain type along with appropriate choices of arrows for that type.

Example 2.4. The following examples involve gathering into a category the theory
of previously encountered objects.

(1) The category Set has objects sets X,Y, . . . and arrows Set(X,Y) maps
f, g · · · : X → Y .

(2) The categories Pre,Pos,Tot respectively have objects preorders, posets,
and total orders; and arrows hom((P,�), (Q,v)) monotonic maps.

(3) The categories Mon and Com respectively have objects monoids and com-
mutative monoids; both have arrows Mon((M, ·, eM), (N, ∗, eN)) monoid
homomorphisms, i.e. maps f : M → N with f(x·y) = fx∗fy, f(eM) = eN .

(4) The category Vectk has objects vector spaces V,W, . . . over the field k and
arrows Vectk(V,W) k-linear maps.

(5) The category Rel has objects sets and arrows Rel(X,Y) maps X×Y → B.

One can conceive of Pos as a subcategory of Pre, Tot as a subcategory of
Pos, Com as a subcategory of Mon, and, as we shall discuss further, Set as a
subcategory of Rel.

20

We say an arrow f : X → Y is an isomorphism when there exists g : Y → X

such that f ◦ g = 1Y and g ◦ f = 1X . We then write f : X
∼=−→ Y or just X ∼= Y ,

and say that X and Y are isomorphic. A category for which all arrows are iso-
morphisms is called a groupoid. An isomorphism endomorphism is also called an
automorphism. A one-object groupoid, or, equivalently, a monoid for which all
elements are invertible, is called a group. Any group can be seen as the collection
of automorphisms—often conceived of as self-symmetries—of some object. The
category Grp of groups is a subcategory of Mon. In the context of Set, an iso-
morphism is a bijection. We have already seen isomorphisms of preorders in the
previous assignment. In the context of a preorder (P,�), seen as a category P ,
an isomorphism x ∼= y is the case when x � y and y � x. A poset can then be
defined as a preorder for which an isomorphism is an equality. In fact, all of our
theorems regarding the uniqueness of the likes of upper sets and universal objects
in posets, can be immediately generalized to preorders by simply adding the phrase
“up to isomorphism” at the end of our statements; e.g. “the join x ∨ y is unique
up to isomorphism” simply means that, if z, z′ both satisfy the condition for being
a join, then it must be that z ∼= z′. In category theory, we usually like to work in
contexts in which isomorphismic objects are not identified as equal, even though
they essentially “behave the same way.” In fact, may constructions become so ill
behaved if we make such an identification that we call this situation evil.

What can we do with categories aside from keep track of a wildly varying class
of mathematical objects? Just as maps are important for studying sets, we need
a notion of arrow for category. In fact, this can be expressed in a satisfyingly self
similar manner: there is a category Cat whose objects are (small) categories and
arrows C → D are so called functors, which we now define formally.

Definition 2.5. For categories C,D, a functor F : C → D consists of the data

• a map |F | : |C| → |D| between the categories’ objects
• a map FX,Y : C(X,Y)→ D(|F |X, |F |Y) for all hom sets C(X,Y)

satisfying the following conditions

• FX,Z(f ◦ g) = FY,Zf ◦ FX,Y g (preservation of composition)
• FX,X(1X) = 1|F |X (preservation of identity)

One somewhat trivial example of a functor is the identity functor 1C : C → C
for any category C whose behavior is given by |1C | = 1|C| and [1C]X,Y = 1C(X,Y).
There are in fact more interesting examples of functors that don’t involve “altering
data.” Let’s consider a lower level example of what we mean. There is a so called
inclusion map i : Z → Q :: n 7→ n, which does not alter the value of its argument
n. This map does however alter the type of n and hence instantiates in the form of
a map an act of reconceptualization of an integer as a rational. The same occurs
at the level of categories, and we have in fact seen several instances of such in
Example 2.3.

Example 2.6. The following functors instantiate the reconceptualization of simpler
objects as categories.

(1) The discrete functor D : Set→ Cat is given by
• |D|S = S
• DS,T f = f , where f : S → T is the functor given by

– |f | : |S| → |T | = f : S → T

21

– fx,x1x = 1fx

In plain English, a functor between discrete categories is just a map
between the object sets.

(2) The thin functor T : Pre→ Cat is given by
• |T|(P,�) = P
• T(P,�),(Q,v)f = f , where f : P → Q is the functor given by

– f : P → Q = f : (P,�)→ (Q,v)
– f? = ?

In plain English, a functor between thin categories is just a monotonic
map between the corresponding preorders.

(3) The delooping functor B : Mon→ Cat is the functor given by
• |B|(M, ·, eM) = BM
• B(M,·,eM),(N,∗,eN)f = Bf , where Bf is the functor given by

– |Bf |• = •
– [Bf]•,• : BM(•, •)→ BN(•, •) = f : M → N .

In plain English, a functor between one-object categories is just a
monoid homomorphism between their respective set of endomorphism.

For the sake of removing clutter, we will henceforth drop the adornments on F
that distinguish its behavior on objects and arrows, and simply write FX,FY, . . .
and Ff, Fg, . . . for the result of applying F to either objects or arrows.

There are other inclusion functors worth mentioning. Firstly there is the se-
quence of inclusions Pre → Pos → Tot defined in the obvious way. There is an
inclusion Set → Pos which is also discrete in the sense that the only relations
are those required by reflexivity. A slightly more interesting example is the graph
functor G : Set → Rel. This functor is the identity on objects, and takes a map
f : X → Y to the relation f̃ given by

f̃(x, y) =

{
> fx = y

⊥ fx 6= y

Said otherwise, since a relation X × Y → B is, by Proposition 0.1, equivalent to
a subset of X × Y corresponding to the points sent to true. In this case, this is
precisely the set of points {(x, fx)} ⊆ X×Y , which is the familiar notion of a graph
of a function, most famously in the case of drawing curves in the 2 dimensional plane
R2 as a way to represent maps R→ R.

Another class of functors are the so called forgetful functors, which take an
object of a certain type and simply “forget” that it comes equipped with certain
structures or properties. These often come in the form of underlying set functors,
which take an object consisting of a set equipped with other features and merely
returns the set. There are such functors U from Cat,Pre,Mon,Vectk, . . . to
Set. Sometimes one needn’t forget the entirety of an object’s structure, e.g. in the
forgetful functor Vectk →Mon that takes a vector space V to the monoid (V,+, 0),
forgetting the structure of the scalar multiplication, along with nice properties,
such as commutativity and the existence of inverses, that + satisfies. Although
the structures are now gone, note that it is not the case that these properties are
magically no longer satisfied; rather, the codomain category to which the object
is sent merely no longer requires that property for an object to inhabit it. An
example that involves no loss of structure—only a property—is the forgetful functor
Com→Mon that does nothing to the argument aside from situating it in a context

22

which no longer requires commutativity. Later in the section, we will give a formal
definition for what it even means for something to be a structure or a property.

Dually, there is a class of functors called free functors, that take an object that
lacks a certain structure and equip it “freely” with that structure, in the sense
of giving it the simplest “least arbitrary” version of the desired new structure as
possible. We will return to what this means formally in a future section. The two
discrete functors from Set to Pre and Cat are both turn out to be examples of
this. We now introduce two new examples that have a more playful feel.

Example 2.7. Given a set S, how do we use S to construct a k-vector space?
Recall that a k-vector space is a set closed under k-linear combination, i.e. u, u′ ∈
V ⇒ cu+c′u′ ∈ V for all c, c′ ∈ k. Naturally the set kS = {

∑
x∈S cxx | cx ∈ k} of all

linear combinations is in S is by construction closed under linear combinations and
henc could be conceived of as a vector space. I.e. we map a set S to a vector space
whose basis is S. Recall that a linear map L : V →W is determined by its behavior
on the basis. Thus we can send a map f : S → T to the linear map kf : kS → kT
given by linearly extending the behavior of f on S. The reader is encouraged
to check that this indeed preserves compositions and identities. Therefore this
procedure assembles into the free functor F : Set→ Vectk.

Remark 2.8. Note that, although the free functor resembles in content the span
of a set of vectors, it is slightly different. The span maps a set S ⊂ V of vectors,
already pre-specified as being in a given vector space V , to the set of their linear
combinations, which, in the case where the vectors are not linearly independent,
yields a subspace of V whose basis is smaller than S. In turn, the free vector space
takes arguments in arbitrary sets, for whom there do not yet exist any predefined
linear relations among their elements. This is analogous to the distinction between
union, which takes as argument subsets of a prespecified ambient set, and the
disjoint union which takes as argument any two sets, for whom there do not yet
exist any predefined equality relations between their elements.

A rather similar procedure can be considered for monoids.

Example 2.9. Given a set S, how do we use S to construct a monoid? A monoid
can be conceived of as a set closed under n-ary versions, including the case where
n = 0 of a specified binary operation. In the same vein as the above example, the set
S∗ = {s0s1 · · · sn−1 | si ∈ S}, i.e. it can be seen as the set of words in the alphabet
S. Then the concatenation of words (s0 · · · sm−1, sm · · · sn) 7→ s0 · · · sn−1sn · · · sm
yields the monoid’s operation, with the empty word serving as its unit. We can
extend a map f : S → T to a map f∗ : S∗ → T ∗ :: s0 · · · sn−1 7→ f(s0) · · · f(sn−1).
This procedure automatically preserves identities and compositions, and thus as-
sembles into the free functor F : Set→Mon.

A highly related functor is the list endofunctor List : Set→ Set, which maps a
set S to the set ListS consists of all the lists [s0, s1, . . . , sn−1] with entries in S. We
extend a map f : S → T to a map List f : ListS → ListT by applying f to each
individual entry. Note that lists seem to only differ in notation, via their use of
brackets and commas, from the words given by the free monoid functor. Another
difference is the fact that the free monoid FS is a monoid, whereas ListS is a set.
We could, however, consider the following composition with the forgetful functor.

Set
F−→Mon

U−→ Set

23

It turns out that, when we apply this composite functor UF : Set→ Set, to a set
S, we see that there is an isomorphism, i.e. a bijection, UF (S)→ ListS given by

s0 · · · sn−1 7→ [s0, . . . , sn−1]

This isomorphism not only holds for any set S but it ends up instantiating an iso-
morphism of functors UF ∼= List. We will define what this means, upon witnessing
more examples, later in the section.

We have actually already encountered a trio of functors corresponding to the
powerset. For example, there is a functor P : Set → Pos mapping a set to
its powerset S 7→ (PS,⊆) and a map to its direct image [f : S → T] 7→ [f∗ :
PS → PT]. Alternatively, there is another powerset functor that takes a map
to its indirect image. We can also choose to forget the ordering and consider the
functor UP : Set → Set, which is often denoted as just P. What about the
preimage? Recall that for a map f : S → T , the preimage is a map f∗ : PT → PS
going the other way! We can consider this as a functor via the opposite category
construction, which generalizes the opposite order construction of the prior section.
More precisely, given a category C, we define its opposite category Cop as having
the same objects but for which arrows are just formally reversed, i.e. Cop(X,Y) =
C(Y,X). We sometimes call a functor Cop → D a contravariant functor C → D. To
contrast with contravariant, we call a functor that doesn’t reverse arrows covariant.
We can then define the contravariant powerset functor P : Setop → Pos given by
S 7→ (P,⊆) and [f : S → T] 7→ [f∗ : PT → PS].

There is one particularly important class of functors called hom functors. Given
a category C and an object X ∈ |C|, we define the covariant hom functor

C(X,−) : C → Set

via the behavior

• Y 7→ C(X,Y)
• [f : Y → Y ′] 7→ λϕ.[ϕ � f] : C(X,Y)→ C(X,Y ′).

Unpacking the behavior on maps, we want the functor C(X,−) to map an arrow
f : X → Y to a map C(X,Y) → C(X,Y ′), i.e. a procedure for taking an arrow
ϕ : X → Y and producing an arrow of type X → Y ′. We do this by simply taking
the composition:

X
ϕ−→ Y

f−→ Y ′.

We choose the diagrammatic composition notation � in place of ◦ to make the
composition order more intuitive. This is a functor since f � g gets mapped to
λϕ.[ϕ � f � g]. Dually, we have a contravariant hom functor

C(−, X) : C → Set

via the behavior

• Y 7→ C(Y,X)
• [f : Y → Y ′] 7→ λϕ.[f � ϕ] : C(Y ′, X)→ C(Y,X).

Unpacking the behavior on maps, we want the functor C(−, X) to map an arrow
f : X → Y to a map C(Y ′, X) → C(Y,X), i.e. a procedure for taking an arrow
ϕ : Y ′ → X and producing an arrow of type Y → X. We do this by simply taking
the composition:

Y
f−→ Y ′

ϕ−→ X.

24

Since this functor is contravariant, f � g gets mapped to λϕ.[g � f � ϕ]. These
functors will play a central role in the subsequent section.

Another interesting family of functors is given by binary operations on objects,
such as the Cartesian Product, taking a pair of sets X,Y to X × Y . To define
these as functors, we actually need the notion of a product of categories. Given
two categories C,D, we define the category C × D as having objects pairs (X,Y),
for X ∈ |C| and Y ∈ |D| and arrows (X,Y) → (X ′, Y ′) as simply pairs of arrows
f : X → X ′ and g : Y → Y ′. More formally:

• |C × D| = |C| × |D|
• [C × D]((X,Y), (X ′, Y ′)) = C(X,X ′)×D(Y, Y ′).

Then the Cartesian product can be seen as a functor Set × Set → Set mapping
(X,Y) to X × Y and an arrow (f : X → X ′, g : Y → Y ′) to the map

X × Y → X ′ × Y ′ :: (x, y) 7→ (fx, gy).

In a similar vein, we can define the disjoint union as a functor of the same type,
or, analogously, the direct sum of vector spaces as a functor Vect×Vect→ Vect.
These functors will also play a crucial role in the next section.

Our final example of functor is the notion of diagram. A diagram of shape ∆ in
C is merely a functor ∆→ C, where ∆ is often finite and is represented graphically

as a quiver. For example, a diagram F of the shape a
f−→ b in Set is merely a map

Fa
Ff−−→ Fb; and more generally a diagram of this shape in C is just a C-arrow. A

diagram F in C of the shape

a b

b

f

g
gf

is a commutative triangle in C:

Fa Fb

b

Ff

Fg
F (gf)

By a commutative diagram we mean a diagram for which any two composition
paths between any two objects give the same map. We can formally encode the
notion of a commutative diagram as a diagram of shape ∆ where ∆ is a preorder.
This is because, since preorders are thin categories, i.e. have at most one arrow
between any two objects, that it must be the case that any composition path gives
precisely this unique object. Because functors preserve all compositions, they also
preserve all commutative diagrams. One particularly noteworthy diagram shape is
the so called commutative square:

a b

a′ b′

f

g g′

f ′

25

Just as a set map can be better understood by considering whether or not it is
injective or surjective, an analogous, yet more granular, vocabulary exists for a
functor. In particular, we say the functor F : C → D is

essentially wide if for all Z ∈ |D|, there is some X ∈ |C| for which FX ∼= Z.

This condition is also called essentially surjective on objects. We drop the “es-
sentially” from both names if the isomorphism is replaced by an equality. The
up-to-isomorphism notion however will as usual play a more fundamental role.

We say the functor F is:

full if ∀X,Y : FX,Y : C(X,Y)→ D(X,Y) is surjective

faithful if ∀X,Y : FX,Y : C(X,Y)→ D(X,Y) is injective

When F is both full and faithful, we call it fully faithful. These functors satisfy the
following useful property.

Proposition 2.10. If F : C → D is fully faithful, then FX ∼= FY implies X ∼= Y .

Proof. By assumption, there are arrows

• α : FX → FY
• β : FY → FX

satisfying

• β ◦ α = 1FX

• α ◦ β = 1FY

Since FX,Y and FY,X are bijections, we have unique preimages to α, β, 1FX , 1FY :

• α′ : X → Y
• β′ : Y → X
• 1X : X → X
• 1Y : Y → Y

We wish to prove that the following compositions are identities.

• β′ ◦ α′
• α′ ◦ β′

By functoriality, the image of these maps under F are precisely

• β ◦ α = 1FX

• α ◦ β = 1FY

These are also the images of 1X and 1Y , which, by injectivity, force the equalities:

• β′ ◦ α′ = 1X

• α′ ◦ β′ = 1Y

Thus establishing the isomorphism X ∼= Y . �

This can be conceived of as a kind of essential injectivity on objects, although
this intuition is insufficiently well behaved to be deployed formally.

There is an interesting, albeit non domain-general, interpretation of these prop-
erties in terms of forgetful functors. Given a functor F : C → D, interpreted as a
forgetful functor, we say that F forgets

property if it fails to be essentially wide

structure if it fails to be full

stuff if it fails to be faithful

26

3. Universality and Representability

Let C be a category. We now identify some special, or universal, objects of C.

Definition 3.1. We say 0 is the initial object of C if for any C-object—including
itself—X, there exists a unique arrow 0 → X. Dually, we say 1 is the terminal
object of C if for any C-object X, there exists a unique arrow X → 1.

By duality, an initial object in C is a terminal object in Cop and vice versa.
When C is thin, i.e. a preorder, the bottom ⊥ is the initial object and top >
is the terminal object. From this observation, we remark that not all categories
have initial or terminal objects—for example, the poset (Z,≤), thought of as a thin
category, has neither top nor bottom and hence neither initial nor terminal object.
We often denote the unique arrow guaranteed by universality via a dashed line:

0 S

The use of the symbols 0 and 1 for generic initial and terminal objects is inspired
by the fact that 0 = ∅ and 1 ∼= ? are respectively the initial and terminal objects
in Set. The latter fact is easier to see: given a set S, a map S → ? consists of a
choice of element in ? for every s ∈ S—but there can be only one such choice: the
sole element ∗ ∈ ?. In turn, one can conceptualize the fact that ∅ is the initial
object in Set by considering the fact that a map ∅ → S consists of a choice for
every element in ∅—but there are no such elements, and hence no choice needs
to be made. Said otherwise, each element of the domain poses a challenge: to
choose a single codomain element associated with it. In the case that there are
no such challenges, we say—via some combination of philosophy and convention—
that there is hence precisely one map that is gifted to us by a lack of choice in the
matter. This is in some sense analogous to the situation in which we define nullary
operators to be units.

In the context of Pre, the initial and terminal objects are, just as in Set, ∅ and
?, equipped with the unique ordering structure on them. This turns out to be no
coincidence: Pre—and similarly Pos—inherit much of their “universal structure”
from Set. This will be elaborated further in the subsequent section.

In both Mon and Vectk we have a so called zero object—i.e. an object that is
both terminal and initial. These are respectively given by the one element monoid
{e} and the zero vector space {0}. At the risk of mild notational overload, we will
denote both of these by 0. These are terminal objects for the same reason that ? is a
terminal object in C—every homormorphism to the one element structure maps the
entire codomain to that element. Just as above, this arises from the fact that half
of the universal structure of Set is inherited by Mon and Vectk. In turn, however,
the initial object is not the empty set! This is because both monoids and vector
spaces require unit elements. The arrows from these one element structures to any
other structure are unique by virtue of the fact that these arrows by definition
must preserve unit elements, and hence uniquely send the sole domain element to
the unit of the codomain.

We now present the first special property of universal objects.

Proposition 3.2. Let 0 and 0′ be initial objects of C. Then 0 ∼= 0′.

Proof. By initiality, there are unique arrows 0→ 0 and 0′ → 0′, which must be the
identity arrows 10 and 10′ . We also have unique arrows ϕ : 0→ 0′ and ϕ′ : 0′ → 0.

27

This yields arrows ϕ � ϕ′ : 0→ 0 and ϕ′ � ϕ : 0′ → 0, which, by uniqeueness, must
be the respective identity arrows. �

By duality, the same fact holds for terminal objects. In fact, we will see through-
out the section that any universal construction can be cast as an initial object in
some category, and hence enjoys the result of this theorem.

As the title suggests, we will also consider a second approach, called repre-
sentability, towards the study of categories. In particular, we say a functor F : C →
Set is representable if there is a natural isomorphism F ∼= C(c,−) for some C-object
c. Dually, we say a functor F : Cop → Set is representable if there is a natural
isomorphism F ∼= C(−, c) for some C-object c. In both of these cases, we say that c
represents the relevant functor. In turn, the functor that an object represents will
often provide a semantic interpretation for the object. A particularly important
example of reprsentable functor is the identity functor 1Set : Set→ Set. Recalling
that an element s ∈ S is equivalent to the arrow λ ∗ .s : ? → S, we have that
S ∼= Set(?, S), and hence that 1Set

∼= Set(?,−).
Universal constructions always have an interpretation in the language of repre-

sentability. In the case of initial and terminal objects, this may seem a little dull.
In particular, consider the constant functor C → Set that sends every object to ?
and every arrow to 1?. If C has an initial object 0, then this functor is naturally
isomorphic to C(0,−) since by definition the set of arrows 0 → X for any X is a
singleton. Dually, the constant functor Cop → Set with the same behavior is natu-
rally isomorphic to C(−, 1). The contravariance, although not necessary to the well
definedness of this particular functor, is stiuplated to respect the fact that C(−, c)
is generically contravariant.

Representable functors are special because of the Yoneda Lemma, the most fa-
mous result in category theory.

Theorem 3.3. Let C be a category, c ∈ |C|, and F : C → Set. Then there is a
natural bijection

Cat(C(c,−), F) ∼= Fc

given by mapping a natural transformation T : C(c,−)→ F to Tc(1c) ∈ Fc.
Proof. Let Φ : Cat(C(c,−), F) → Fc :: T 7→ T (1c). We will now construct a map
Ψ : F (c)→ Cat(C(c,−), F) that satisfies Φ ◦Ψ = 1Fc and Ψ ◦ Φ = 1Cat(C(c,−),F).

We define Ψ to be a valid inverse by mapping an element x of Fc to a natural
transformation T for which Tc(1c) = x. We now show that this uniquely defines a
natural transformation. Since T consists of component maps Tc′ : C(c, c′)→ Fc for
all c′, it suffices to define Tc′(f) for all f ∈ C(c, c′). Then, letting f ∈ C(c, c′), the
naturality condition states that the following square must commute.

C(c, c) Fc

C(c, c′) Fc′

Tc

−�f Ff

Tc′

Tracing the two paths of the identity arrow 1c ∈ C(c, c), we have:

→↓ : 1c 7→ Tc(1c) = x 7→ (Ff)x

↓→ : 1c 7→ f 7→ Tc′(f)

This then forces us to define Tc′(f) = (Ff)x. �

28

The reader is encouraged to check that this bijection is natural in c. Furthermore,
this bijection is natural in C and F , but this involves slightly more mental and
notational contortion to articulate. Note that, were we to apply the Yoneda Lemma
to Cop, we would have that for any F : Cop → Set and c ∈ |C|:

Cat(Cop(c,−), F) = Cat(C(−, c), F) ∼= Fc.

The Yoneda Lemma can be used to answer questions like “what are the natural
maps X → Set(S,X)?” Said both more suggestively and formally: what are the
natural transformations 1Set

∼= Set(?,−)→ Set(S,−)? The Yoneda Lemma states
that these would be in natural bijection with elements of the set Set(S, ?), which,
by the terminality of ?, form a singleton given by the constant map. Hence the
only natural transformation T : 1Set → Set(S,−) would be defined by extending
T? : ? → Set(S, ?) :: 1? 7→ λs.∗ : S. Hence, applying the bijection given by the
Yoneda Lemma, we have, for a set X and X-element x, i.e. arrow x : ?→ X, that:

TX(x) = Set(S, x) : Set(S, ?)→ Set(S,X) :: f 7→ x.

Said more plainly, a natural map Set(?,X) → Set(S,X) is just a precomposition
with the map x : ?→ S, i.e. a map that sends the element x ∈ X to the constant
map λs.x : S → X. This then allows us to conclude that the only natural map—
i.e. the only map that can be defined generically, with no reference to the sets
involved—X → Set(S,X) is the map that takes elements x ∈ X to constant maps
S → X that send each S-element to x.

This example involved the case that the functor F was itself representable. In
this context, the Yoneda Lemma has another meaningful interpretation. Define
the functor Y, called the Yoneda embedding, of type Cop → Cat(C,Set) as follows.
For an object c, define Yc = C(c,−). For an arrow ϕ : c → c′, define the natural
transformation Yϕ : C(c′,−)→ C(c,−) via the components

[Yϕ]X : C(c′, X)→ C(c,X) :: f 7→ ϕ � f.

Then, the Yoneda lemma states that

Cat(Yc′,Yc) = Cat(C(c′,−), C(c,−)) ∼= C(c, c′).
This can be interpreted as the statement that the Yoneda embedding Y is fully
faithful; i.e. that Yc′,c : Cop(c′, c) = C(c, c′) → Cat(Yc′,Yc) is always a bijection.
Recall that this means that Y has the property that if Yc ∼= Yc′, then c ∼= c′. This
has the deep implication that an object is determined up to isomorphism by the
functor it represents. This truth is in some sense why category theory contributes
insight to mathematics beyond mere bookkeeping: rather, it allows one to speak of
mathematical structures purely in terms of their relationships to all other structures
of their kind, as opposed to relying on what they’re “made of.” As an example of
this principle, consider the case of initial objects: since these always represent the
constant set-valued functor of value ?, they must all be isomorphic.

Let’s now consider a more interesting dual pair of universal constructions. We
motivate these with a case study in the context of Set. Consider a map ϕ : S →
X×Y ; for example, perhaps S consists of the set of points in some island, X and Y
respectively denote the sets of possible values for temperature and pressure, and ϕ
assigns to each point the ordered pair of air temperature and pressure at the altitude
of an average human height. We can easily extract from this map two maps ϕX
and ϕY , which respectively report the temperature and the pressure. Intuitively,
ϕX merely forgets the pressure data and ϕY merely forgets the temperature data.

29

More formally, we can define ϕX = ϕ � πX , where we call πX the projection map,
and define it by the rule (x, y) 7→ x. Doing the same for Y , we note the following:

ϕs = (ϕX(s), ϕY (s))

Said otherwise, from a map ϕ ∈ Set(S,X × Y), we can extract the pair of maps
(ϕ � πX , ϕ � πY) ∈ Set(S,X) × Set(S, Y), and, from a pair of maps (ϕX , ϕY) ∈
Set(S,X) × Set(S, Y), we can extract the map λs.(ϕXs, ϕY s) ∈ Set(S,X × Y).
Furthermore, this correspondence yields a bijection

Set(S,X × Y) ∼= Set(S,X)× Set(S, Y).

Diagrammatically, this is often expressed as follows:

S

X × Y

X Y

ϕ

ϕX ϕY

πX πY

The dashed arrow is read as follows: given a pair (ϕX : S → X,ϕY : S → Y),
there exists a unique arrow ϕ : S → X × Y making the diagram commute. This
diagram also states that—following the existence of compositions—that, given a
ϕ, composing it with the projections yields a pair (ϕX : S → X,ϕY : S → Y).
The bijection and the diagram respectively characterize the universality and repre-
sentability features of the Cartesian Product.

More generally, given a category C and two objects Xi for i = 0, 1, the product
X0×X1, if it exists, is an object equipped with projection arrows πi : X0×X1 → Xi

for i = 0, 1, such that, given another object S and a pair of arrows ϕi : S → Xi

for i = 0, 1, there exists a unique arrow ϕ : S → X0 × X1 making the following
diagram in C commute:

S

X0 ×X1

X0 X1

ϕ

ϕ0 ϕ1

π0 π1

The product X0 ×X1 then satisfies the natural bijection:

C(−, X0 ×X1) ∼= C(−, X0)× C(−, X1).

We can encode this even more tightly as a terminal object or a representable functor.
Letting X0, X1 be objects of C, define the category C/(X0, X1) as having objects
cones, i.e. triples (A, f0, f1) where A is a C-object and fi : A→ Xi for i = 0, 1 are
C-arrows. We call A the apex and the fi’s the legs. Arrows (A, f0, f1)→ (A′, f ′0, f

′
1)

are simply C-arrows ϕ : A→ A′ for which the following diagram commutes:

A A′

X0 X1

ϕ

f0

f1

f ′1

f ′0

30

The triple (X0×X1, π0, π1) is then the terminal object in C/(X0, X1). This merely
reformulates the diagram we used to define products since there (S, ϕ0, ϕ1) was a
cone and we stipulated that it had a unique cone arrow to (X0 ×X1, π0, π1)—this
is precisely what it meant to be a terminal object! Since they are terminal objects,
we automatically have that products are unique up to isomorphism—where this
isomorphism is itself the unique one that consists of arrows that commute with
projections. The cone constructions also allows us to codify the representability
perspective of the product. More precisely, let Cone(X0,X1) : Cop → Set map a C-
object A to the set of cones, i.e. objects of C/(X0, X1), with apex A. Furthermore,
it maps a C-arrow ϕ : A→ A′ to the set map (A′, f0, f1) 7→ (A,ϕ � f0, ϕ � f1). We
then have that this functor is represented by the product X0×X1; i.e. we have the
following natural isomorphism:

Cone(X0,X1)
∼= C(−, X0 ×X1)

This is the case, since, as our definition established: a cone over X0, X1 is naturally
equivalent to an arrow to the product X0 ×X1.

We now consider the dual case: consider a set map ψ : R + S → X, e.g.
if R and S represent the set of points on two different islands—and hence their
disjoint union R + S represents the set of points across both islands, X the set of
possible temperatures, and ψ a map assigning a point its temperature. Dually to
the previous example, we can split this up into a pair (ψR : R → X,ψS : S → X),
corresponding to the temperature maps for each individual island. Just as before,
this yields a natural bijection:

Set(R+ S,X) ∼= Set(R,X)× Set(S,X).

Just as composing with the projection maps allows for decomposing maps into a
product, precomposing with so called inclusion maps allows for decomposing maps
out of a disjoint union. More specifically the inclusion map ιR : R→ R+S is given
by the inert rule r 7→ r, which merely changes the ambient setting within which
the element is considered. Then we have that ψR = ιR � ψ, and similarly for S.

More generally, given a category C and two objects Xi for i = 0, 1, the coproduct
or sum X0 + X1, if it exists, is merely the product in Cop. Thus it is an object
equipped with inclusion arrows ιi : Xi → X0 + X1 for i = 0, 1, such that, given
another object S and a pair of arrows ϕi : Xi → S for i = 0, 1, there exists a unique
arrow ϕ : X0 +X1 → S making the following diagram in C commute:

S

X0 ×X1

X0 X1

ϕ

ι0

ϕ0

ι1

ϕ1

The coproduct X0 +X1 then satisfies the natural bijection:

C(X0 +X1,−) ∼= C(X0,−)× C(X1,−).

We can encode this even more tightly as an initial object or a representable functor.
Letting X0, X1 be objects of C, define the category (X0, X1)/C as having objects
cocones, i.e. triples (A, f0, f1) where A is a C-object and fi : Xi → A for i = 0, 1 are
C-arrows. We still call A the apex (but, if you’re a stickler for symmetry, feel free to

31

call it the nadir) and the ιi’s the legs (or arms). Arrows (A, f0, f1) → (A′, f ′0, f
′
1)

are simply C-arrows ϕ : A→ A′ for which the following diagram commutes:

A A′

X0 X1

ϕ

f0

f ′0

f ′1

f1

The triple (X0 + X1, ι0, ι1) is then the initial object in (X0, X1)/C. This merely
reformulates the diagram we used to define coproducts since there (S, ϕ0, ϕ1) was a
cocone and we stipulated that it had a unique cocone arrow from (X0 +X1, ι0, ι1)—
this is precisely what it meant to be an initial object! Again, we automatically have
that coproducts are unique up to canonical isomorphism. The cocone constructions
also allows us to codify the representability perspective of the coproduct. More
precisely, let Cocone(X0,X1) : C → Set map a C-object A to the set of cocones, i.e.
objects of (X0, X1)/C, with apex A. Furthermore, it maps a C-arrow ϕ : A → A′

to the set map (A, f0, f1) 7→ (A′, f0 � ϕ, f1 � ϕ). We then have that this functor is
represented by the coproduct X0 +X1; i.e. we have the following isomorphism:

Cocone(X0,X1)
∼= C(X0 +X1,−)

This is the case, since, as our definition established: a cocone under X0, X1 is
naturally equivalent to an arrow from the coproduct X0 +X1.

We note that, in the context of a thin category, i.e. preorder, P we had that the
meet x ∧ y satisfied, in arrow notation:

t→ x ∧ y ⇔ t→ x, t→ y,

I.e. we have the natural bijection

P (t, x ∧ y) ∼= P (t, x)× P (t, y)

Hence the meet is a just a product, and, by duality, a join is just a coproduct.
Now, zooming out, let’s consider products and coproducts in Pre. Recall that

Pre inherited its initial and terminal object from Set for deep reasons we put off
until the next section. For the same reason, this will also turn out to hold for
products and coproducts! Our work isn’t necessarily finished, though: it may be
the case, as we’ll show, that the underlying set of the product of two preorders is
the Cartesian product of their underlying sets, but we still need to describe what
the ordering is on this set—and the same for coproducts. This wasn’t necessary
before, simply because the initial object ∅ and terminal object ? had a unique
ordering. We start with the coproduct because it is more simple. More precisely,
given preorders (Pi,�i) for i = 0, 1, we define their coproduct (P0 + P1,�) by

� (p, q) =

{
�i (p, q) p, q ∈ Pi
⊥ otherwise

Said otherwise, if p and q belong to the same summand, then we merely relate
them as we did before; otherwise, we do not relate them. This automatically makes
the set inclusion maps ιi : Pi → P0 + P1 monotonic since p �i q ⇒ ιi(p) �
ιi(q). Furthermore, given a pair of monotone maps ϕi : (Pi,�i) → (Q,v), this
automatically assembled into a monotone map

ϕ0 + ϕ1 : (P0 + P1,�)→ (Q,v)

32

defined by p 7→ ϕi(p) for p ∈ Pi. This is automatically monotone since we needn’t
concern ourselves with preserving cross-summand relations! This vacuousness of
satisfying property is at the heart of a universal construction. We now define the
product to satisfy the dual condition: i.e. component maps should be vacuously
combinable into a monotone map to the product. Towards this end, given preorders
(Pi,�i) for i = 0, 1, we define their product (P0 × P1,�) as

� ((p0, q0), (p1, q1)) =

{
> [p0 �0 q0] ∧ [p1 �1 q1]

⊥ otherwise

Said otherwise, two ordered pairs (pi, qi) are related if and only if both of their
respective components had been related. This allows projections to be vacuously
monotone since (p0, p1) � (q0, q1) ⇒ pi �i qi; and, furthermore, given monotone
maps ϕi : (Q,v)→ (Pi,�i), this automatically assembles into a monotone map

ϕ0 × ϕ1 : (Q,v)→ (P0 × P1,�) :: q 7→ (ϕ0q, ϕ1q)

since q v q′ ⇒ ∀i : ϕi(q) �i ϕi(q′)⇒ ϕ(q) � ϕ(q′).
We now use these constructions to investigate the products and coproducts in the

subcategories Pos and Tot. Before exploring them, we note that, if these categories
have products or coproducts, then these must be the same as those constructed in
Pre. This property is often referred to as reflection of products and coproducts,
and is due to the following result.

Proposition 3.4. Fully faithful functors reflect products. Formally, let F : C → D
be a fully faithful functor, d0, d1 be D-objects with product d0 × d1, and c0, c1 be
C-objects for which Fci = di. Then, if c0 × c1 exists, F (c0 × c1) = d0 × d1.

Proof. Let c ∈ |C|. Then consider the sequence of isomorphisms

D(Fc, d0 × d1) ∼= D(Fc, d0)×D(Fc, d1)

∼= C(c, c0)× C(c, c1)

∼= C(c, c0 × c1)

∼= D(Fc, F (c0 × c1))

Since this did not rely on c, this gives the isomorphism of representable functors:

D(−, d0 × d1) ∼= D(−, F (c0 × c1))

The full-faithfuness of the Yoneda embedding then implies the desired isomorphism

F (c0 × c1) ∼= d0 × d1. �

Since full-faithfulness does not rely on arrow orientation, duality gives us that
fully faithful functors also reflect coproducts. Thus, to study products and coprod-
ucts in Pos and Tot, it suffices to check that the products and coproducts defined
in Pre preserve posetality and totality of their components.

In the case of Pos both products and coproducts defined in Pre turn out to be
products and coproducts in Pos. To see this, we check that if (Pi,�i) are both
posetal, then their product and coproduct is also posetal. Recall that posetality
merely requires the antisymmetry condition: x � y, y � x⇔ x = y. Since coprod-
ucts do not add any cross-summand relations, we receive no candidate pairs pi ∈ Pi
for which p0 � p1 or vice versa, and hence we automatically have that the preorder
coproduct is also a poset. Now consider the product (P0 × P1,�) and suppose

33

(p0, p1) � (q0, q1) and (q0, q1) � (p0, p1) and hence that pi �i qi and qi �i pi, thus,
by the posetality of the factors, forcing pi = qi. Therefore Pos inherits both its
product and coproduct from Pre.

It is easy to see, in contrast, that the same doesn’t hold for Tot. Since total
orders require that for any pair p, q either p � q or q � p, the coproduct of non-
empty total orders is never a total order since we have no relations across summands.
The same goes for products, and this is perhaps best exemplified with the example
of (Z × Z,≤)—there’s no way to compare (3, 5) and (5, 3), and hence products of
total orders are typically not total.

Just as it did its terminal object, the category Mon inherits products from Set.
More precisely, given monoids (Mi,�i, ei) for i = 0, 1, we define their product as
(M0 ×M1,�, (e0, e1)), where � is defined component-wise:

(m0,m1)� (n0, n1) = (m0 �0 n0,m1 �1 n1).

It is a straightforward exercise to check that this satisfies the monoid axioms. The
projection maps preserve the operation since

πi((m0,m1)� (n0, n1)) = πi(m0 �0 n0,m1 �1 n1) = mi �i ni.

Similarly, two monoid homomorphisms ϕi : N → Mi vacuously assemble into a
monoid homormorphism ϕ defined by n 7→ (ϕ0n, ϕ1n) since

ϕ(n� n′) = (ϕ0(n� n′), ϕ1(n� n′))
= (ϕ0n�0 ϕ0n

′, ϕ1n�1 ϕ1n
′)

= (ϕ0n, ϕ1n)� (ϕ0n
′, ϕ1n

′)

= ϕ(n)� ϕ(n′).

The analogous identity can be checked for unit elements. The coproduct of monoids,
however, looks different from what we’ve seen thus far, but is related to the free
monoid construction. More explicitly, given monoids (Mi,�i, ei), we define their
free product (M0 ∗M1,�, e) as follows. Let M0 ∗M1 be the set of all words of alter-
nating M0 and M1 non-unit elements with ∅ the empty word. Using superscripts
to denote which monoid each element comes from, what follows are some M0 ∗M1

elements.

x0y1z0, x1y0x1z0,∅
We note that these can start or end with a term from either M0 or M1, can include
repeated elements, and can be of any finite length with the unique zero length word
serving as the unit element. Since the unit element of any monoid is unique, we
have to fuse the two monoids’ units into a single unit. Since this is the case, we had
to exclude units from our words since these could be absorbed into the element to
their right or left. We will later see a more elegant characterization of this set.

Finally, we define the product w � w′ of two words w,w′ as follows. If the final
term of w and the first term of w′ come from distinct monoids, then this product
is merely the concatenation of the two words. If, in contrast, these two terms
come from the same monoid, then we first concatenate the two lists, but then, so
as to preserve alternation, replace these two adjacent elements with their product
in the respective monoid to which they both belong. Towards greater formality,
let h(w) and t(w) denote the first and last letter of w, respectively, and let h(w)
and t(w) respectively denote all but the first and last term of w. Letting ; denote

34

concatenation, we have w = h(w);h(w) = t(w); t(w), and hence define � by

w � w′ =

{
t(w); t(w)�i h(w′);h(w′) t(w), h(w′) ∈Mi

w;w′ otherwise

Note that, in the case of singleton words coming from the same monoid, this is
merely their product in that monoid. We now define the inclusion maps ιi : Mi →
M as sending non-unit elements to their corresponding singleton words, and send-
ing the unit element to the empty word. These are homomorphisms since we do
not alter the elements, merely recast them as words. Finally, given two monoid ho-
momorphisms ϕi : Mi → N , we show that these vacuously assemble into a monoid
homomorphism ϕ defined term-wise. More precisely, ϕ(a; b) = ϕ(a);ϕ(b), where,
so as to respect the inclusion maps, we define ϕ(a) = ϕi(a) for a ∈ Mi. This map
automatically preserves products w�w′ when these equal w;w′. In the other case,
i.e. when t(w), h(w′) ∈Mi, we have:

ϕ(w � w′) = ϕ(t(w); t(w)�i h(w′);h(w′))

= ϕt(w);ϕi[t(w)�i h(w′)];ϕh(w′)

= ϕt(w);ϕit(w)�i ϕih(w′);ϕh(w′)

= ϕt(w);ϕt(w)�i ϕh(w′);ϕh(w′)

= ϕ(t(w); t(w))� ϕ(h(w′)h(w))

= ϕw � ϕw′

Finally, we define ϕ∅ = eN . The reader can check that this plays well with the
computation above.

The product and coproduct of vector spaces is particularly interesting, in that
it illuminates much of the underlying theory of linear algebra. It turns out, that in
Vectk, the product and coproduct are both given by the direct sum ⊕, where the
direct sum of two k-vector spaces V,W is defined as having vectors:

V ⊕W = {(v, w) | v ∈ V,w ∈W},

with addition and scalar multiplication given component-wise:

c · (v, w) = (c · v, c · w) (v, w) + (v′, w′) = (v + v′, w + w′).

When the product and coproduct in C are isomorphic, we call it a biproduct. The
fact that the direct sum is a product follows from an identical argument as the
monoid product: in both cases, we have component-wise operations. We hence
leave this as an exercise to the reader. The fact that the direct sum is also a
coproduct, however, is more interesting, and is made possible by the existence of 0
and +. More precisely, given Vi for i = 0, 1, we need inclusion maps ιi : Vi → V .
These are given by v0 7→ (v0, 0) and v1 7→ (0, v1). For sets, we did not have a
canonical arrow into a Cartesian product from a factor—but because vector spaces
are equipped with the special element 0, we can just define the other component
of an included factor as 0. Similarly, we now need a way to assemble two maps
ϕi : Vi → W . We now wish to define the combined map ϕ : V0 ⊕ V1 → W so as
to satisfy, for the sake of a bijective correspondence, ιi � ϕ = ϕi. We do so by
exploiting linearity:

ϕ(v0, v1) = ϕ(v0, 0) + ϕ(0, v1) = ϕ0(v0) + ϕ1(v1).

35

This cannot be done in the case of typical Cartesian products of sets since there is
no way to break up a generic set map f(u, v) into its u and v domain influences.
Linearity, however, forces these to be independent!

If C has products and coproducts, then if we have an arrow f : X0+X1 → Y0×Y1,
then this can be studied via an array of 4 component maps f ji : Xi → Yj for i, j =
0, 1. When C has biproducts, this then becomes true for maps ϕ : X0⊕X1 → Y0⊕Y1.
In the context of vector spaces, this is precisely the idea of a block matrix! More
precisely, for a linear map

L : V0 ⊕ V1 →W0 ⊕W1

we have a 2× 2 array, or block matrix whose ijth entry is a linear map Vj → Vi. In
addition to having biproducts, The category of k-vector spaces enjoys even more
structure: all of its objects are isomorphic to bipowers, i.e. repeated biproducts, of
isomorphic copies of a single object: the base field k. Recall that, for any vector
space V , there exists a tuple B = (bi)

n
i=1 ⊂ V , called a basis, such that, for any

vector v ∈ V , there are unique ci ∈ k for which v =
∑
i cibi. This can be recast

as a direct sum as follows. Given a vector v ∈ V , let kv = {cv | c ∈ k} be
the one dimensional vector space of scalar multiples of v. Note that kv ∼= k via
v 7→ 1. Then, given a basis B = (bi)

n
i=1 ⊂ V , we have the following sequence of

isomorphisms, instantiating the direct sum decomposotion of V .

V ∼=
n⊕
i=1

kbi ∼= kn

The isomorphism B[−] and its inverse [−]B is given by the following composition
of maps. Given a vector v ∈ V , we can uniquely write v =

∑
i cibi. We then

map v to the tuple (c1b1, . . . , cnbn) and then to (c1, . . . , cn). In turn, given a tuple
(c1, . . . , cn) ∈ kn to the tuple (c1b1, . . . , cnbn) and then to the sum

∑
i cibi. The

existence and uniqueness of a linear expression in terms of the basis for any vector is
precisely what allows these maps to be mutual inverses. Now, given any linear map
L : V →W , and a basis A of V and B of W , we have the following composition:

V W

km kn

L

B[−][−]A

B[L]A

Note that we used the shorthand B[L]A = [−]A � L � B[−]. The map B[L]A is the
matrix corresponding to L written in terms of the domain basis A and codomain
basis B. Recall that the ijth entry i[L]j of this matrix is a linear map k → k, which
is just a scalar; more precisely, it is the coefficient of the codomain basis bi of the
image of the domain basis aj under the linear map L. In diagrammatic form, this
entry can be encoded as follows.

V W

kaj kbi

L

i[L]j

36

Note that we chose the convention that the domain basis goes on the right so as to
match the classic matrix composition ordering:

B2
[L]B1B1

[L′]B0
= B2

[LL′]B0
.

Products and coproducts in C not only act on objects, but, when they exist, can
be seen as functors C × C → C. More precisely, we map C × C-objects—i.e. pairs
(X,Y)—respectively to X × Y and X + Y , and C × C-arrows—i.e. pairs (f, g) :
(X,Y)→ (X ′, Y ′)—respectively to arrows X×Y → X ′×Y ′ and X+Y → X ′+Y ′.
We define the product arrow in terms of universal properties as follows.

X X ′

X × Y X ′ × Y ′

Y Y ′

f

πX

πY

πX′

πY ′

g

The case of coproduct is merely dual to the case of product above and is left as an
exercise. In the case of Set, these are defined in the intuitive way: (x, y) 7→ (fx, gy)
and x 7→ fx, g 7→ gy respectively. In the case of biproducts and a zero object (a
simultaneously initial and terminal object)—as is the situation in Vectk—this can
be made even simpler. Since we have a zero object, we can define the zero morphism
X → Y for any pair X,Y as the following composition:

X 0 Y

Then, since any arrow X ⊕ Y → X ′ ⊕ Y ′ is merely an arrow for each choice of
domain and codomain summand, simply map (f, g) : (X,Y) → (X ′, Y ′) to the
arrow X ⊕ Y → X ′ ⊕ Y ′ defined by the components as follows:[

f : X → X ′ 0
0 g : Y → Y ′

]
Thus the direct sum of linear maps ⊕ni Li : Vi → Wi is the map L : ⊕iVi → ⊕iWi

given by the following block diagonal matrix.
L1 0 . . . 0
0 L2 . . . 0
...

...
. . .

...
0 0 . . . Ln

Thus, we can define a diagonal matrix as a direct sum of scalar maps ⊕i(ci : k → k).

Note that, although the direct sum of vector spaces involves the product of
their unerlying sets, its dimension is the sum of their respective dimensions—more
precisely, the basis of the direct sum is the disjoint union of the bases of each
summand. This is true for a deep reason to be explained in the next section. What
about a vector space whose basis is the product of the bases of some pair of vector
spaces? It turns out that there is a universal construction that achieves this. To
motivate this construction, let V and V ′ be vector spaces with bases A = (aj)j∈J

37

and A′ = (ai)i∈I . Let L be a linear map, with domain the set of vectors V × V ′,
and R a bilinear map with domain V × V ′. We then have the following scenarios.

L(v, w) = L(
∑
j cjaj ,

∑
i ciai)

= L(
∑
j cjaj , 0) + L(0,

∑
i ciai)

=
∑
j cjL(aj , 0) +

∑
i ciL(0, ai)

=
∑
k∈I+J ckLâk

where we let âk be (aj , 0) for k ∈ J and (0, ai) for k ∈ I. This notation is made to
transparently imply the idea that a linear map of two arguments is determined by
the disjoint union of the bases for these two arguments’ spaces. Now consider the
case of bilinearity.

R(v, w) = R(
∑
j cjaj ,

∑
i ciai)

=
∑
i

∑
j cjciR(aj , ai)

=
∑

(i,j)∈I×J cicjR(aj ⊗ ai)

where the tensor aj⊗ai is a formal symbol that represents the ordered pair (aj , ai),
but now conceived as a generic element of a new domain vector space that we define
in order to reconceptualize R as a linear map instead of a bilinear one. Note that
R is determined by pairs of the two arguments, and hence will have as basis the
Cartesian product of the bases of its factors, or tensorands. The tensor product will
thus be multiplicative in dimension. We may construct the tensor product V ⊗ V ′
explicitly as follows.

V ⊗ V ′ = {
∑
i,j cij(vi ⊗ v′j) | vi ∈ V, v′j ∈ V ′, cij ∈ k}/ ∼,

where the equivalence relation encodes the multilinearity that we wish to be pre-
served by an outgoing linear map. More precisely:

[
∑
i civi]⊗ [

∑
j c
′
jv
′
j] ∼

∑
i,j cic

′
j(vi ⊗ vj).

A linear map R̃ : V ⊗ V ′ →W then behaves like a bilinear map R : V × V ′ →W :

R̃([
∑
i civi]⊗ [

∑
j c
′
jv
′
j]) = R̃(

∑
i,j cic

′
j(vi ⊗ vj))

=
∑
i,j cic

′
jR̃(vi ⊗ vj)

This can be made more precise via a universal property:

V × V ′ W

V ⊗ V ′
ρ

R

R̃

The map ρ is given by the rule (v, v′) 7→ v ⊗ v′, and the dashed line, as usual,
represents the unique arrow—in Vectk—that makes the diagram commute. Note
that the non-dashed arrows are in this case not arrows in Vectk but rather are
bilinear maps. As usual, this universal property can be recast as a representable
functor. More precisely let Bilin(V × V ′,−) : Vectk → Set map a vector space W
to the set of bilinear maps V × V ′ → W . Then the universal property gives the
following natural isomorphism:

Bilin(V × V ′,−) ∼= Vectk(V ⊗ V ′,−).

38

Thus, although the tensor product is neither product nor coproduct in Vectk, it is
nonetheless a universal binary operation on vector spaces, and one that plays the
role of multiplication—at the least at the level of dimensionality—relative to the
direct sum’s role of addition. We will explore this further in the subsequent section.

Another pair of universal constructions of note are so called equalizers and their
dual coequalizers. Both constructions begin with a pair of parallel arrows f, g :
X → Y , and ask the following dual questions. The equalizer eq(f, g) is an arrow
ϕ : A→ X for which ϕ� f = ϕ� g, such that any other arrow β : B → X with the
same property must be a composition β = α � ϕ for some α : B → A. This can be
expressed as a universal diagram as follows:

A X Y

B

ϕ f

g

β
α

The coequalizer coeq(f, g) is given by the dual condition:

X Y V

W

f

g

ω

ψ

ν

In the case of Set, we will show that the equalizer and coequalizer—using the same
variable names as in the diagrams above—can be given via the following formula.

A = {x ∈ X | fx = gx}
V = Y/ ∼ where y ∼ y′ ⇔ [y = fx, y′ = gx]

By construction, these satisfy the commutativity properties. We now prove univer-
sality. We first do the equalizer case. Suppose there is some β : B → X for which
β � f = β � g, i.e. f(βb) = g(βb) for every b ∈ B. This implies that βb ∈ A, and
hence that the image of β is a subset of A. Thus we may simply define α by the rule
given by β, except with codomain A. Now consider the coequalizer case; i.e. that
there is a map ω : Y → W for which f � ω = g � ω, i.e. for which ω(fx) = ω(gx)
for all x ∈ X. But then this means that ω can be defined on equivalence classes
[y] based on the equivalence relation ∼, and hence can be seen as a two step pro-
cess: first via applying ψ, which quotients by ∼, and then by applying ω to the
equivalence relation.

In the context of Pre, the equalizer and coequalizer have underlying set given
by the set (co)equalizer. The ordering structure on the equalizer A is made to
maintain that it is a sub-order of X—adding any further relations would cause ϕ
to fail to be monotone, and deleting any relations would create an obstruction for
maps from B to factor through A. In the case of the coequalizer, we must now ask
what it means for [y] � [y′]. Since ψ is monotone, we must always have that, when
y � y′, that [y] � [y′]. To make this relation well defined under the equivalence
class, we define the ordering as follows.

� ([y], [y′]) =

{
> ∃z, z′ : y ∼ z � z′ ∼ y′

⊥ otherwise

39

As was the case for products and coproducts, Pos and Tot inherit their equalizers
from Pre—it is easy to see that posets are closed under taking both equalizers and
coequalizers, and that total orders are closed under taking equalizers but typically
not under coequalizers.

We will not formally discuss (co)equalizers in the context of Mon. The idea
would involve defining things in terms of generators so that the relevant arrows
become homomorphisms. In the context of Vectk, given a linear map L : V →W ,
we define its kernel kerL and cokernel cokerL respectively as be the equalizer and
coequalizer of the pair L, 0 : V →W . Set theoretically, we define these as follows.

kerL = {v ∈ V | Lv = 0}
cokerL = W/ ∼ where w ∼ w′ ⇔ ∃v : w − w′ = Lv

Then, it is easy to check that the equalizer and coequalizer of L,L′ : V → W are
respectively ker(L− L′) and coker(L− L′).

We now introduce a highly general dual pair of universal constructions. Let C
be a category, serving as a setting, ∆ a small category, serving as a shape, and
τ : ∆→ C be a C-diagram of shape ∆. Define a cone (c, (fd)d∈|∆|) over τ as having
the data of a C-object c and a collection of arrows fd : c→ τ(d) for all ∆-objects d.
Furthermore, this data must satisfy the condition that for all ∆-arrows i : d→ d′,
the following diagram commutes.

c

τ(d) τ(d′)

fd
fd′

τ(i)

Dually, a cocone (c, (fd)d∈|∆|) under τ has an equivalent definition with the excep-
tion that the arrows fd : τ(d) → c go the other way. In a context where ∆ has a
visually tractable form, we often represent cones and cocones via a single picture.
For example, let ∆ be the preorder defined by the following graph.

d1 d2 d3

d4 d5

Given the diagram τ : ∆→ C, a cone over τ can then be depicted as the following
commutative diagram.

c

τ(d1) τ(d2) τ(d3)

τ(d4) τ(d5)

40

By virtue of commutativity, a subset of the legs can determine the cone. In this
context, the following diagram uniquely determines the one above.

c

τ(d1) τ(d2) τ(d3)

τ(d4) τ(d5)

Now consider a cocone under τ .

c

τ(d1) τ(d2) τ(d3)

τ(d4) τ(d5)

This diagram too can be simplified, albeit differently than in the cone case.

c

τ(d1) τ(d2) τ(d3)

τ(d4) τ(d5)

We now define a pair of notions that directly generalize products and coproducts.
Let C/τ be the category with objects cones over τ and arrows (c, (fd))→ (c′, (f ′d))
C-arrows ϕ : A → A′ for which f ′d = ϕ � fd. Then the limit of τ , denoted lim τ
is the terminal object of C/ϕ. Dually, define the category τ/C as having objects
cocones under τ and arrows (c, (fd)) → (c′, (f ′d)) C-arrows ϕ : A → A′ for which
f ′d = fd�ϕ. Then the colimit of τ , denoted colim τ , is the initial object of τ/C. Now
let Coneτ : Cop → Set map a C-object A to the set of cones over τ , i.e. C/τ -objects,
with apex A. Dually, let Coconeτ : C → Set map a C-object A to the set of cocones
under τ , i.e. τ/C-objects, with apex A. We then have the following isomorphisms.

Coneτ ∼= C(−, lim τ)

Coconeτ ∼= C(colim τ,−)

41

Let ∆ be the discrete category on 2 and τ(i) = Xi. We then have the following.

C/τ = C/(X0, X1)

τ/C = (X0, X1)/C
Coneτ = ConeX0,X1

Coconeτ = CoconeX0,X1

lim τ = X0 ×X1

colim τ = X0 +X1

Now let ∆ be given by the following quiver.

d d′
1

0

Let τ be given by 0 7→ f, 1 7→ g. Then lim τ = eq(f, g) and colim τ = coeq(f, g).
In addition to these two common shapes, there are two more pairs that are arise
sufficiently frequently that they have names. Denote respectively by→← and←→
the following two diagrams.

d′ d d′′ d′ d d′′0 1 10

If τ : [→←] → C, we call lim τ a pullback, and if σ : [←→] → C, we call colimσ a
pushout. The other two configurations—colim τ and limσ—are seldom encountered.
Letting τ and σ both be given by the rules d′ 7→ X, d 7→ Z, d′′ 7→ Y, 0 7→ f, 1 7→ g,
we often write lim τ = X ×Z Y and colimσ = X +Z Y , and often refer to them
as fibered products and coproducts, respectively. In this context, we often depict
pullbacks and pushouts as follows.

X ×Z Y X Z X

Y Z Y X +Z Y

y
f

f

g

g

p

The corner symbols are used to distinguish these two situations, both from each
other and from a mere commutative square. We will only cover examples of pull-
backs and pushouts in Set. In general, these are given by the following formulae.

X ×Z Y = (X × Y)|fx=gy

X +Z Y = (X + Y)/[fz ∼ gz]

This has some interesting special cases. For example, suppose A,B are both subsets
of S and we consider the pullback of the inclusion maps ιA, ιB . Then

A×S B = A×B|ιAa=ιBb = {(s, s) | s ∈ A ∩B} ∼= A ∩B.

Hence we have the set intersection. Now, with this intersection in hand, consider
A ∩B with inclusions ι′A, ι

′
B to A,B. Then the pushout is the classic union:

A+A∩B B = A+B/[ι′Az ∼ ι′Bz] = A ∪B.

We now consider a differently flavored example. Let f : X → Y be a map and
ι : S → Y a subset inclusion. Then the pullback is given by the preimage:

X ×Y S = X × S|fx=ιs = {x ∈ X | fx ∈ S} = f∗(S).

42

We end this section with a remark about limits and colimits of diagrams of shape
given by the thin category (N,≤), which we denote by ω, and depict as follows:

0→ 1→ 2→ · · · → n→ · · ·
Classically, limits and colimits of diagrams of this shape have respectively been
called inverse limits and direct limits. We will avoid this terminology since it flips
the verbal associations of the general limit and colimit terminology.

Let τ : ω → Set be given on objects by n 7→ n = {1, . . . , n} and on arrows as
inclusion maps. We now show why colim τ ∼= N.

0 1 · · · n · · ·

N

A

ιn

fn

f

The universal cocone legs are inclusions. We must now construct a map f : N→ A.
By defining this via the rule n 7→ fn(n), we have that ιn � f = fn. This is well
defined by the cone condition, which forces fn(i) = fm(i) whenever i < m < n.

We now consider a limit over a diagram of such a shape. Given some set X,
let τ : ωop → Set be given on objects by n 7→ Xn and on arrows as projections
ηn : Xn → Xn−1 :: (x1, . . . , xn−1, xn) 7→ (x1, . . . , xn−1). We show that lim τ ∼= XN.

? X · · · Xn · · ·

XN

A

Πn

fn

f

Define the universal cone leg Πn by the map s 7→ s(n). A map f : A → XN is
equivalent to a map F : N×A→ X. Let πn : Xn → X be given by the projection
onto the final factor. We then define F (n,−) as the following composition.

A Xn

X

fn

F (n,−)
πn

It turns out that all limits are in some sense generated by products and equalizers;
and, dually, all colimits by coproducts and coequalizers. We conclude this section
by stating without proof a result that formalizes this intuition.

Proposition 3.5. Let C be a category with products and equalizers. Then, given
any diagram τ : ∆→ C, lim τ exists in C.

